

MINISTERE DE L'ENERGIE

PROJET DE REDRESSEMENT ET DE RESTRUCTURATION DU SECTEUR DE L'ELECTRICITE (P2RSE)

Réactualisation des Plans de Développement des Systèmes Electriques de trois réseaux d'exploitation de la JIRAMA et de trois régions pour l'Electrification Rurale

Rapport Définitif - Juillet 2013

MINISTERE DE L'ENERGIE

Contrat N° 004 / 13-MdE / P2RSE

1 Synthèse générale

Contexte de l'étude

La présente étude s'inscrit dans un contexte où les structures de coûts du système électrique ont subi d'importantes modifications depuis les derniers plans de développement officiels du secteur de l'électricité qui datent de 2007. Cette nouvelle étude se propose :

- (i) De réactualiser les Plans de Développement de la production des systèmes électriques de trois réseaux d'exploitation de la JIRAMA (regroupant les RI d'Antananarivo et de Toamasina, et les exploitations d'Ambositra, d'Antsiranana, d'Ambilobe et de Morondava) et de trois régions pour l'électrification Rurale (régions de BOENY, de SAVA et de SOFIA) en construisant et validant une méthodologie partagée par toutes les parties prenantes du projet (MdE, ORE, ADER, JIRAMA);
- (ii) D'établir des recommandations sur la conception du « Système Relationnel de Planification » afin qu'il réponde aux objectifs visés : amélioration du système de planification du secteur de l'électricité.

Prévision de la demande des trois réseaux d'exploitation de la JIRAMA

L'exercice est mené à un niveau relativement agrégé mais suffisamment détaillé pour pouvoir correctement cerner la trajectoire de la demande des exploitations étudiées jusqu'en 2030.

- Paramètres macroéconomiques

Depuis la crise de 2009, marquée par une baisse du PIB de 4,1% en un an, le redémarrage de la croissance reste atone à Madagascar mais on note une volonté politique/nationale de soutenir/construire durablement une croissance économique forte. Dans le cadre des efforts entrepris et dont les résultats commencent à être perceptibles (croissance du PIB de près de 2% en 2011 et 2012), la Direction Générale de l'Economie prévoit un taux de croissance du PIB de 2,8% pour l'année 2013 (cible confortée par les prévisions du FMI). Dans le cadre de la présente étude on considère une poursuite de l'effort de développement avec un taux de croissance du PIB qui atteint 5% en 2017. Ce taux est maintenu constant jusqu'en 2030 dans le Scénario Probable. Dans le Scénario Volontariste la poursuite de cette évolution à la hausse

MdE-ORE-ADER-JIRAMA Page 3 sur 134

du taux de croissance du PIB se poursuit pour atteindre un plateau de 7% à partir de 2022. Dans les deux scénarios, le secteur secondaire est le moteur de cette croissance. Dans une moindre mesure, le secteur tertiaire soutient aussi cette croissance, et le secteur primaire, légèrement en retrait, maintient une productivité croissante.

En absence d'étude prospective récente, on considère que la croissance démographique observée sur 2000-2012 (+2,9%/an) est reconduite sur la période 2012-2030 et gouverne la prévision de demande d'électricité effectuée dans le cadre du Scénario Probable. Pour le Scénario Volontariste, on retient le taux de croissance de 3%/an, niveau correspondant au scénario haut de la dernière projection démographique publiée par l'INSTAT en 1993.

- Prévision de la demande du RI Antananarivo

On considère que le taux de couverture (rapport entre la population de la zone électrifiée et la population totale du périmètre administratif correspondant), de 54% en 2012, va croître régulièrement pour atteindre 60% en 2030 (objectifs du millénaire). Concomitamment, le taux de desserte (rapport entre le nombre de personnes bénéficiant du service de l'électricité et la population de la zone électrifiée), qui est de 45% en 2012, bénéficiera d'une croissance régulière pour atteindre 50% en 2030. Le taux d'accès à l'électricité induit est de 30% en 2030, soit une augmentation de 25% par rapport à sa valeur de 2012.

Sous l'effet de l'augmentation du nombre de clients, la croissance de la consommation spécifique des anciens clients est en partie compensée par celle des nouveaux accédants à l'électricité : au final la consommation spécifique des clients résidentiels croît seulement de +11 kWh/an/client jusqu'en 2020, puis de +7 kWh/an/client sur les années suivantes.

La croissance des autres principaux postes de la consommation est associée à la croissance des PIB sectoriels correspondants.

La mise en place d'un programme de réduction des pertes non techniques d'ici 2020 et l'amélioration continue du rendement technique du réseau sur toute la période étudiée, permettent de voir progresser le rendement global du réseau (rapport des ventes sur la production) de 67% en 2012 à environ 75% en 2020, puis à 80% à l'horizon 2030. Parallèlement, les actions de maîtrise de la demande en électricité conduisent à une amélioration du facteur de charge (rapport entre les puissances moyenne et maximale adressées à la production) qui passe de 57% en 2013 à 60% en 2030.

Dans le Scénario Probable, les croissances moyennes des besoins de production et de la puissance de pointe sur le RI Antananarivo sont respectivement de 4,3%/an et de 4%/an sur 2013-2030 pour satisfaire une croissance de la consommation de l'ordre de 5,4%/an.

Dans le Scénario Volontariste, la situation économique exceptionnelle a pour conséquence des croissances moyennes annuelles des besoins de production et de puissance de pointe sur le RI Antananarivo respectivement de l'ordre de 5,2% et de 4,8% sur 2013-2030, permettant de satisfaire une croissance de la consommation de l'ordre de 6,2%/an.

- Prévision de la demande des autres exploitations de la JIRAMA

Les déterminants sont identiques à ceux utilisés pour le RI Antananarivo et les principales différences concernent essentiellement l'état actuel de ces exploitations (taux de desserte, consommation spécifique moyenne, rendement global). Sur ces exploitations, les croissances annuelles moyennes des besoins prévisionnels de production et de puissance sont du même ordre de grandeur que pour le RI Antananarivo : elles varient respectivement dans une plage de 3,4% à 5,8% et de 3,3% à 5,2% sur 2013-2030, et permettent de satisfaire une croissance de la consommation qui varie de 5% à 6,4%.

PEMC des trois réseaux d'exploitation de la JIRAMA

- Paramètres macroéconomiques

Tous les coûts de l'étude sont exprimés en \$ (USD) de l'année 2012 (1 \$ = 2200 MGA). Les paramètres clés de la planification, le **taux d'actualisation réel** et le **critère de qualité de service** sont respectivement fixés à 10% et 24 heures par an pour le RI Antananarivo.

- Combustibles

Les combustibles disponibles à Madagascar sont dérivés du pétrole brut : le Fuel lourd (PCI de 40,8 GJ/t), et le Gasoil (PCI de 42,5 GJ/t). On adopte un prix du pétrole brut de 80 USD/bl, situé dans la fourchette basse, qui se veut conservateur pour les résultats de notre étude. Les prix du Fuel lourd et du Gasoil sont respectivement estimés à 80% et à 120% de celui du brut, conformément aux corrélations historiques ces prix. Compte tenu des frais de transport, d'assurance, de manutention et tout autre frais induit pour amener le combustible à la centrale, le prix de revient du Gasoil est de 992 USD/t et celui du Fuel lourd est de 686 USD/t.

MdE-ORE-ADER-JIRAMA Page 5 sur 134

- Modélisation des systèmes électriques existants

Une attention particulière est apportée à l'état des systèmes électriques existants et à leurs modélisations sur la base des historiques disponibles. L'analyse de ces historiques met notamment en évidence une importante dégradation de la marge opérationnelle qui devient structurellement négative au cours de cette période sur le périmètre des 6 exploitations étudiées : elle passe d'un solde positif de +34 milliards de MGA en 2010 à un solde négatif de - 42 milliards de MGA en 2012, l'augmentation des produits opérationnels (+17%) étant plus que compensée par celles des charges (+61%). Cette évolution vient en grande partie de l'augmentation du poids de la production thermique dans la structure des coûts, augmentation due à deux raisons principales : la hausse du prix des combustibles fossiles (environ +40% entre 2010 et 2012) et celle de la production thermique portée par l'augmentation de la consommation, notamment sur le RI Antananarivo qui représente, sur le périmètre étudié, 80% des produits pour 85% de la production. L'évolution de la consommation de combustible est cependant bien corrélée à celle de la production thermique ce qui traduit la non dégradation, d'un point de vue global, de la performance de ces installations. On constate également une importante baisse, sur la période 2010-2012, du rendement global des réseaux qui passe, sur l'ensemble du périmètre, de 71% à 68%. Ce point rappelle l'importance de résorber les Pertes Non Techniques (PNT) et de viser une amélioration continue du rendement technique du réseau, donc de la productivité.

Néanmoins, il ressort que la situation financière actuelle de ces 6 exploitations JIRAMA n'est pas soutenable dans la durée. Il semble donc judicieux d'effectuer une étude financière détaillée du périmètre étudié voire de l'ensemble du secteur de l'électricité (compte tenu du poids du RI Antananarivo), afin de vérifier les états financiers de cette activité clé pour le développement du pays et garantir leur équilibre dans la durée (études financière et tarifaire).

- Candidats hydrauliques

Les caractéristiques des aménagements hydroélectriques candidats sont issues d'études réalisées par plusieurs bureaux d'études sur des périodes différentes (on pourra réaliser une analyse comparative des différents projets afin de mieux garantir, pour les prochaines études de planification, la cohérence des estimations des caractéristiques de ces candidats). Les estimations de coûts de construction sont mises à jour aux conditions économiques 2012 à partir du taux d'inflation mondial (Source FMI). Les dates de mise en service au plus tôt sont obtenues sur la base de l'estimation de la durée de construction des ouvrages et en tenant

compte du temps nécessaire pour effectuer les études d'avant projet complémentaires, le bouclage financier des projets et le lancement des appels d'offre. Sur la base de l'ensemble de ces éléments, les coûts économiques complets des candidats hydroélectriques sont estimés varier dans une plage allant de 50 à 120 \$/MWh (soit environ 110 à 270 MGA/kWh).

- Candidats thermiques

La détermination des candidats thermiques de référence est effectuée à partir des durées d'équilibre. La taille de ces moyens de production est choisie en fonction de plusieurs critères en lien avec les fondamentaux de la gestion opérationnelle des équilibres entre l'offre et la demande. Les candidats thermiques de référence sont :

- Pour le RI Antananarivo, le moteur diesel de 10 MW au Fuel lourd pour la base et, en cas de besoin de production de pointe supplémentaire, la TAC de 18 MW au Gasoil ;
- Pour le RI Toamasina et Antsiranana, les moteurs diesel de 3,5 MW au Fuel lourd pour la production de base et les moteurs diesels de 1 MW au Gasoil pour la pointe ;
- Pour Ambilobe, Ambositra et Morondava, les moteurs diesels de 250 kW au Gasoil.

Le coût complet de référence thermique pour la base est de 176 \$/MWh. Il est composé d'un coût d'anticipation de 165 \$/kW et d'un coût proportionnel de 157 \$/MWh. Le coût d'anticipation de référence (celui du moyen de pointe) est de 105 \$/kW.

En pratique, il conviendra de saisir les opportunités de marché (effet conjoncturels pouvant faire baisser les prix des équipements), quitte à modifier légèrement les puissances unitaires des groupes, mais à condition de ne pas modifier la planification élaborée.


A partir des caractéristiques technico économiques des candidats thermiques de référence, on estime le Coût implicite de l'Energie Non Servie (ou Coût de la Défaillance) à 4700 \$/MWh.

L'analyse de ces premiers résultats permet de construire comme illustré ci-après une description de la compétitivité relative des candidats hydroélectriques et thermiques et de livrer les principales conclusions suivantes :

 Le 4^{ème} groupe d'Andekaleka (triangle bleu sur le graphique), dont la production est modulable du fait de l'aménagement du barrage régulateur de Fempona, a un coût complet qui se révèle particulièrement compétitif (environ 60 \$/MWh);

- Les autres candidats hydroélectriques peuvent être compétitifs pour la production de base ou de semi-base (coûts complets de 50 et 120 \$/MWh). La prise en compte des aléas pesant sur l'EOD (hydrologique notamment) précisera cette compétitivité;
- Les exploitations disposant de candidats hydroélectriques, s'éloignent de l'optimum économique lorsque les centrales thermiques sont durablement utilisées avec des facteurs de charge annuels supérieurs à 50% environ (4380 heures par an).

L'analyse des autres principaux candidats à la production, l'Eolien et le Photovoltaïque, montrent que leurs coûts complets sont respectivement de l'ordre de 110-120 \$/MWh et de 180-190 \$/MWh. Compte tenu de la compétitivité relative des candidats hydroélectriques, on ne retient pas d'option de production de type éolienne et photovoltaïque dans le cadre du présent PEMC. De plus, l'intermittence associée à ces types de production, imposerait la nécessité d'un stockage d'électricité et/ou d'un complément de production modulable pour satisfaire la demande avec le niveau de qualité requis (cf. LOLP), effet induit impliquant un renchérissement de leurs coûts de revient pour le système électrique.

MdE-ORE-ADER-JIRAMA Page 8 sur 134

- PEMC des exploitations prises isolément

Le PEMC est le plan d'expansion qui conduit au moindre coût global pour le système électrique sur la période étudiée et à qualité de service égale. Ce coût global comprend, les dépenses d'investissement des nouveaux moyens de production mis en service, les charges fixes et variables d'exploitation, les coûts de défaillance. Les PEMC sont construits à partir de simulations effectuées (dans le cadre de la présente étude) avec le logiciel WASP qui permet d'estimer l'équilibre entre l'offre et la demande des exploitations.

La construction du PEMC du RI Antananarivo confirme que les projets de centrales hydrauliques sont les options de développement à moindre coût pour le long terme.

Compte tenu du temps nécessaire pour développer puis construire ces ouvrages hydrauliques (mises en service au plus tôt à partir de 2017), il est nécessaire de mettre en service environ 50 MW de moyens de production thermique dans l'intervalle de temps, afin de pouvoir satisfaire au moindre coût l'adéquation entre l'offre et la demande.

Ce sont environ 160 MW de puissance hydraulique qui sont à installer de 2017 à 2019. La quantité d'énergie massive apportée au système par ces ouvrages hydrauliques reporte à 2026 les nouveaux besoins en moyens de production. Ensuite, la satisfaction des nouveaux besoins se matérialise par la mise en service de 15 MW supplémentaires de production hydraulique et par environ 10 MW par an de production thermique d'appoint.

L'évolution de la répartition des charges et des flux sur le RI Antananarivo sera directeur pour la détermination des endroits où devront être installés les groupes thermiques d'appoint, de même que les renforcements de réseau qui devront être effectués.

Les 160 MW de puissance installée avant 2020 intègrent notamment la mise en service d'un des projets hydrauliques majeurs (puissance installée supérieure à 100 MW) suivants :

- Antetezambato (180 MW, 67 \$/MWh);
- Mahavola (150 MW, 82 \$/MWh);
- Lohavanana (120 MW, 77 \$/MWh);
- Sahofika (105 MW, 49 \$/MWh).

Tous ces projets hydrauliques majeurs sont compétitifs par rapport aux options thermiques de référence et trouveront leur place dans le système avec l'augmentation de la demande. Sur la période étudiée néanmoins, un seul de ces aménagements est inséré dans le système : c'est

l'option Sahofika, retenue compte tenu de son coût complet le plus bas. Une analyse affinée de ces 4 projets majeurs devraient emporter le choix final.

La construction du PEMC du RI Toamasina confirme que le coût de revient du projet Volobe Amont (plus de 120 \$/MWh) est relativement élevé compte tenu de l'aléa hydrologique et de la forte saisonnalité des apports qui sont associés au productible de cet aménagement (faibles débits d'étiage). Les besoins de production, au fil de leur apparition, sont satisfaits par la mise en place de moyens de production thermiques de référence.

La construction du PEMC d'Ambositra confirme que le projet de centrale hydraulique de Tazonana (coût de revient inférieur à 50 \$/MWh) est une option de développement à moindre coût pour le long terme. Compte tenu du temps nécessaire pour développer puis construire cet ouvrage hydraulique (mise en service au plus tôt en 2017), il est nécessaire de mettre en service un moyen de production thermique de 250 kW en 2015. Suite à la mise en service de la centrale hydraulique de Tazonana en 2017, la quantité d'énergie apportée au système reporte les nouveaux besoins en moyen de production au-delà de l'horizon de l'étude.

La construction des PEMC d'Antsiranana, d'Ambilobe et de Morondava nécessite, à partir de 2015, la mise en service de moyens de production thermique de référence afin de pouvoir satisfaire au moindre coût l'adéquation entre l'offre et la demande. Cet équilibre va inévitablement se tendre au fil des prochaines années du fait de la conjonction des différents points suivants :

- Déclassement des vieilles centrales dont les performances sont les plus dégradées ;
- Réduction du nombre de centrales en location qui pèsent sur les charges récurrentes ;
- Augmentation de la demande.

Une étude de l'évolution de la répartition des charges et des flux sur le réseau de transport de ces exploitations, permettra de définir précisément les lieux optimums, du point de vue du réseau, pour l'installation de ces groupes thermiques, de même que les renforcements de réseau qui devront éventuellement être effectués.

- PEMC des interconnexions

L'analyse économique des interconnexions proposées montre qu'elles font sens du point de vue économique. Compte tenu du temps nécessaire pour développer et construire les

MdE-ORE-ADER-JIRAMA Page 10 sur 134

lignes d'interconnexions, les bénéfices induits par leur mise en service ne sont perceptibles qu'à partir de 2019.

Le PEMC de l'interconnexion RIATA induit une anticipation de 1 à 2 ans de la mise en service des nouveaux moyens de production par rapport au PEMC du RIA. Le coût total actualisé sur la période étudiée, y compris celui de l'interconnexion, est inférieur de l'ordre de 4 à 5% à la somme des coûts actualisés des PEMC des trois exploitations prises indépendamment l'une de l'autre.

Le PEMC de l'interconnexion RIDA confirme que le projet de centrale hydraulique d'Andranomamofona (coût de revient inférieur à 70 \$/MWh) est une option de développement à moindre coût pour le long terme. Compte tenu du temps nécessaire pour développer puis construire cet ouvrage hydraulique (mise en service au plus tôt en 2017), il est nécessaire de mettre en service 15 MW de moyens de production thermique en 2015 afin de pouvoir satisfaire au moindre coût l'adéquation entre l'offre et la demande. Suite à la mise en service de la centrale hydraulique d'Andranomamofona en 2018, la quantité d'énergie apportée au système reporte les nouveaux besoins en moyen de production au-delà de l'horizon de l'étude. Le coût total actualisé sur la période étudiée, y compris celui de l'interconnexion est inférieur d'environ 30% à la somme des coûts actualisés des PEMC des deux exploitations prises indépendamment l'une de l'autre.

Plans Directeurs de trois régions pour l'Electrification Rurale

Madagascar est un pays contrasté, constitué d'étendues très peu habitées et de territoires densément peuplés. La densité nationale, estimée à 34,5 hab./km² en 2010, ne reflète pas l'occupation spatiale du pays. Entre 2004 et 2010, le taux de couverture électrique estimé en milieu rural est passé de 3,9% à 7%. Une augmentation significative que l'Etat Malgache, par le relai de l'ADER, entend renforcer à travers la mise en œuvre de la politique nationale en matière d'électrification rurale. Dans cette perspective, l'ADER a pour objectif de développer des Plans Directeurs pour l'Electrification Rurale pour chacune des 22 Régions de Madagascar afin de réduire les déséquilibres régionaux et de s'inscrire dans le processus de décentralisation qui permet aux élus locaux d'être les principaux interlocuteurs des programmes de développement de leur région.

La méthodologie suivie pour établir ces Plans Directeurs pour l'Electrification Rurale est construite en 3 principales étapes :

- L'analyse « Spatiale » qui permet, à partir d'une estimation de l'Indicateur du Potentiel de Développement (IPD) des différentes localités, de sélectionner des Pôles de Développement et leur population de couverture, avant d'être hiérarchisés;
- L'analyse de la demande qui précise, par catégorie de consommateurs, le nombre de clients potentiels, leurs consommations spécifiques puis, par agrégation, la demande résultante tant en énergie qu'en puissance ;
- L'établissement des plans directeurs pour l'électrification rurale au niveau régional qui définit les schémas de développements nécessaires, avec une raisonnable priorité donnée aux énergies renouvelables (hydroélectricité, biomasse, puis éolien et solaire), avant que ne soient étudiés plus précisément les différents projets identifiés au sein des Régions une fois la planification effectuée.

Cette méthodologie est appliquée par l'ADER, avec le concours du Bureau d'études « Innovation Energie Développement », aux 3 premières régions visées que sont BOENY, SAVA et SOFIA. La région actuellement en cours d'étude est celle de VATOVAVY FITOVINANY.

Le Collectif partage la méthodologie adoptée pour ces études. Au final, l'établissement des plans directeurs pour l'électrification rurale au niveau régional conduit aux principaux résultats suivants :

Synthèse des projets - Région BOENY (Source ADER/IED)

	BIOMASSE	DIESEL	SOLAIRE	TOTAL	
Projets identifiés	6	17	102 écoles prim./ 25 structures sanit.	150	
Localités / Pôles couverts	23 / 15	45 / 19	98	166 / 34	
Population couverte (chiffre 2010)	49 000	72 000	125 000	246 000	
Coût actualisé du kWh min. (Ar)	649,34 (26 cts €)				
Coût actualisé du kWh max. (Ar)	904,21 (36 cts €)				
Total investissements initiaux (Md Ar)	16 (6,4 M€)	10,7 (4,3 M€)	0,5 (0,2 M€)	27,2 (10,9 M€)	

MdE-ORE-ADER-JIRAMA Page 12 sur 134

Synthèse des projets - Région SAVA (Source ADER/IED)

	HYDRO	DIESEL	SOLAIRE	TOTAL
Projets identifiés	6	13	209 écoles primaires / 31 structures sanitaires	259
Localités / Pôles couverts	110 / 41	53 / 19	162	325 / 60
Population couverte (chiffre 2010)	133 000	105 000	206 000	444 000
Coût actualisé du kWh min. (Ar)	170,72 (7 cts €)			
Coût actualisé du kWh max. (Ar)	230,58 (9 cts €)			
Total investissements initiaux (Md Ar)	32,4 (13 M€)	12,8 (5,1 M€)	0,9 (0,4 M€)	46,1 (18,4 M€)

Synthèse des projets - Région SOFIA (Source ADER/IED)

	HYDRO	BIOMASSE	DIESEL	SOLAIRE	TOTAL
Projets identifiés	2	11	47	328 écoles prim./ 39 structures sanit.	427
Localités / Pôles couverts	20 / 14	40 / 17	93 / 66	266	419 / 97
Population couverte (chiffre 2010)	21 000	52 000	150 000	234 000	457 000
Coût actualisé du kWh min. (Ar)	86,57 (3,5 cts €)	735,74 (29 cts €)			
Coût actualisé du kWh max. (Ar)	137,65 (9 cts €)	889,16 (36 cts €)			
Total investissements initiaux (Md Ar)	6,55 (2,6 M€)	16,6 (6,6 M€)	20,4 (8,2 M€)	1,4 (0,56 M€)	45 (18 M€)

Il est proposé d'étudier plus avant les projets identifiés au sein de ces régions de façon à définir plus précisément les *business plans* associés aux projets. Suite à la recherche de financement et à l'obtention du bouclage financier, ces projets d'électrification pourront être mis œuvre.

Recommandations pour la conception du « Système Relationnel de Planification »

Au regard des problèmes de circulation d'informations rencontrés par les différents acteurs du secteur de l'électricité, lors de l'élaboration des plans de développement des systèmes électriques tant en milieu urbain que rural, une refonte du système d'information s'avère indispensable et primordiale. Certes, les informations existent, mais leur disponibilité, ou plutôt leur accessibilité, n'est pas toujours acquise. Parfois, certaines informations ne sont connues que par le service qui les a produites, et n'ont jamais été diffusées, alors qu'elles auraient pu servir à d'autres acteurs.

MdE-ORE-ADER-JIRAMA Page 13 sur 134

Le « Système Relationnel de Planification » à mettre en place aura pour but d'instaurer une vision stratégique du développement du secteur de l'électricité à Madagascar, et servira :

- A aider la mise en place de bases de données exhaustive intégrant les informations les plus complètes possibles concernant le secteur : sites d'énergies renouvelables existants et potentiels avec système d'information géographique à l'appui, installations électriques, statistiques d'exploitation, plans de développement ou d'électrification, et toute autre donnée numérique utile ;
- De portail internet permettant d'accéder aisément à un inventaire complet de données relatives au secteur (publication, consultation, mise à jour, extraction, ...) nécessaire à l'élaboration des plans de développement.

On présente dans le présent rapport des recommandations sur la conception du « Système Relationnel de Planification » (« SyReP ») afin que ce dernier réponde aux objectifs visés sur le plan structurel et organisationnel.

Table des matières

1	Synthèse générale	3
2	Table des matières	15
3	Table des illustrations	18
4	Liste des abréviations	19
5	Introduction	20
	5.1 Contexte de l'étude	
	5.2 Objectifs de la présente étude	
	5.3 Organisation mise en place pour l'étude	
	5.4 Programme de travail	
	5.4.1 Comité Technique n° 1 (CT1) – 4 et 5 avril 2013	
	5.4.2 Période du 8 au 19 avril 2013	
	5.4.3 Comité Technique n° 2 (CT2) – 22 au 26 avril 2013	
	5.4.4 Période du 29 avril au Comité Technique n° 3 (CT3)	
	5.4.5 Comité Technique n° 3 (CT3) – 17 au 21 juin 2013	
6		
	6.1 Paramètres macro-économiques	
	6.1.1 Activité économique globale (PIB)	
	6.1.2 Démographie	25
	6.2 Principaux déterminants de la demande du RI Antananarivo (RIA)	
	6.2.1 Accroissement du nombre de clients résidentiels	
	a) Scénario Probable	
	b) Scénario Volontariste	
	6.2.2 Consommation moyenne des clients résidentiels	
	6.2.3 Autres principaux déterminants de la demande du RI Antananarivo	
	6.3 Prévision de la demande du RI Antananarivo	
	6.3.1 Scénario Probable	
	6.3.2 Scénario Volontariste	
	6.4 Principaux déterminants de la demande des autres exploitations JIRAMA	
	6.5 Prévision de la demande des autres exploitations	
	6.5.1 Prévision de la demande du RI Toamasina	
	6.5.2 Prévision de la demande d'Ambositra	
	6.5.3 Prévision de la demande d'Antsiranana	
	6.5.4 Prévision de la demande d'Ambilobe	
	6.5.5 Prévision de la demande de Morondava	
7	Préparation des PEMC des trois réseaux d'exploitation de la JIRAMA	
	7.1 Paramètres clés de la planification	
	7.1.1 Taux d'actualisation	
	7.1.2 Critère de qualité de service	
	7.2 Les combustibles	
	7.2.1 Les combustibles utilisables	
	7.2.2 Le prix international des combustibles utilisables	
	7.2.3 Le prix rendu centrale des combustibles utilisables	39

	7.3	Modélisation des parcs de production en exploitation	40
	7.3	3.1 Parc de production hydroélectrique	41
		a) Vallée de l'Ikopa (RI Antananarivo)	
		b) Vallée de la Mandraka (RI Antananarivo)	
		c) Vallée de la Vohitra (RI Antananarivo)	
		d) Vallée de la Manandona (RI Antananarivo)	
		f) Producteurs indépendants d'électricité hydroélectrique (RI Antananarivo)	
	7.3		
		Analyse des comptes opérationnels des 6 exploitations JIRAMA	
		Equipements de production hydroélectrique candidats	
		Equipements de production thermique candidats	
	7.0 7.6	* * *	
	7.6 7.6		
	7.6	1 ,	
		Inter comparaison des candidats hydroélectriques et thermiques	
	7.8 <i>7.8</i>	Autres équipements potentiels de production	
	7.8		
	7.8	<u> </u>	
		Sensibilité sur la compétitivité relative des candidats hydrauliques et thermiques	
		• • • • • • • • • • • • • • • • • • • •	
8	Co	onstruction et résultats des PEMC des exploitations prises isolément	63
	8.1	Rappel méthodologique	63
	8.1	T 0	
	8.1	3	
	8.1	$oldsymbol{I}$	
	8. <i>1</i>	1 · · · · · · · · · · · · · · · · · · ·	
	<i>8.1</i>		
		PEMC du RI Antananarivo	
	8.3	PEMC du RI Toamasina	71
	8.4	PEMC d'Ambositra	74
	8.5	PEMC d'Antsiranana	77
	8.6	PEMC d'Ambilobe	80
	8.7	PEMC de Morondava	83
9	Ar	nalyse économique des interconnexions proposées	86
		Méthodologie	
		Coût des lignes d'interconnexion	
		Interconnexion du RI Antananarivo, du RI Toamasina et d'Ambositra (RIATA)	
		Interconnexion d'Antsiranana et d'Ambilobe (RIDA)	
10) Pla	ans Directeurs de trois régions pour l'Electrification Rurale	93
	10.1	Analyse spatiale	94
		a) Région de BOENY	
		b) Région de SAVA	96
		c) Région de SOFIA	
		Analyse de la demande	
	10.3	Etablissement des plans directeurs pour l'électrification rurale au niveau régional	102
1	1 Re	ecommandations pour la conception du Système Relationnel de Planification	106
	11.1	Disponibilité des moyens techniques	107
		Utilité pour les acteurs clés du système	
		Base de données	
		Droits d'accès	
		Conditions de succès	
		Mise en œuvre	
	11.0		110

12	Annexes	111
1	2.1 Prévision de la demande du RIA (détail du Scénario Probable)	112
	2.2 Prévision de la demande du RIA (détail du Scénario Volontariste)	
	2.3 Scénarios Volontaristes pour les autres exploitations de la JIRAMA	
	12.3.1 RI Toamasina	
	12.3.2 Exploitation d'Ambositra	
	12.3.3 Exploitation d'Antsiranana	
	12.3.4 Exploitation d'Ambilobe	
	12.3.5 Exploitation de Morondava	
]	2.4 Modélisation des aménagements hydroélectriques	116
	12.4.1 Définition des Conditions Hydrologiques communes à tous les aménagements	
	12.4.2 Précisions sur quelques hypothèses retenues pour les aménagements existants	116
	a) Mandraka	116
	b) Manandona & Antelomita	
	c) Andekaleka	
	d) Sahanivotrye) Tsiazompaniry	
	12.4.3 Précisions sur quelques hypothèses retenues pour les aménagements candidats	
	a) Antetezambato	
	b) Mahavola	
	c) Lohavanana	
	d) Sahofika	
	e) Ranomafana	
	f) Volobe Amont	
	g) Andekaleka G4h) Tsinjoarivo	
	i) Talaviana	
	j) Andranomamofona	
	k) Mahitsy	
	l) Lily	
	m) Tazonana	
]	2.5 Apports hydrologiques (centrales existantes et candidates)	
	12.5.1 Apports naturels de l'Ivohitra à Andekaleka (m3/s)	
	12.5.2 Apports naturels de l'Ikopa à Antelomita (m3/s)	
	12.5.3 Apports naturels de la Mandraka à Mantasoa (m3/s)	
	12.5.4 Apports naturels de la Mandraka à l'usine de Mandraka (m3/s)	
	12.5.5 Apports naturels de la Manandona à l'usine de Manandona (m3/s)	
	12.5.6 Apports naturels de l'Ivondro à Volobe Amont (m3/s)	
	12.5.7 Apports naturels de la Mangora à Lohavanana (m3/s)	
1	12.5.8 Apports naturels de la Mania à Antetezambato (m3/s)	
	2.6 Extrait des comptes opérationnels des 6 exploitations JIRAMA	
	2.7 Potentiel éolien mondial (Source 3TIER)	
	2.8 Potentiel solaire mondial (Source 3TIER)	
]	2.9 Impact du Scénario de stress sur les caractéristiques des candidats hydrauliques	
1	2.10 Caractéristiques des candidats hydrauliques pour un taux d'actualisation de 8%	131
1	2.11 Synoptique des principales simulations effectuées dans le cadre du PEMC	132
1	2.12 Spécifications techniques du Système Relationnel de Planification (« SyReP »)	133
	12.12.1 Performances techniques	133
	a) Portail web	133
	b) Archivage	
	12.12.2 Spécifications techniques	
	a) Base de données	
	b) Interface	
	c) Mise en ligned) Sécurisation	
	e) Maintenance	
	f) Documentation	134

Table des illustrations

Figure 6-1 : Croissance historique du PIB à Madagascar et comparaisons (Source : FMI)	24
Figure 6-2 : Evolution historique et prévisions du PIB de Madagascar (millions MGA ₁₉₈₄)	25
Figure 6-3: Prévision de la demande du RI Antananarivo – Scénario Probable	30
Figure 6-4: Prévision de la demande du RI Antananarivo – Scénario Volontariste	30
Figure 6-5 : Principales différences d'hypothèses avec RI Antananarivo	31
Figure 6-6: Exemple d'évolution de la consommation de clients résidentiels (kWh/an)	32
Figure 6-7 : Prévision de la demande du RI Toamasina – Scénario Probable	32
Figure 6-8 : Prévision de la demande d'Ambositra – Scénario Probable	
Figure 6-9 : Prévision de la demande d'Antsiranana – Scénario Probable	
Figure 6-10 : Prévision de la demande d'Ambilobe – Scénario Probable	
Figure 6-11 : Prévision de la demande de Morondava – Scénario Probable	
Figure 7-1 : Historique du prix du pétrole brut (Source : INSEE France)	
Figure 7-2 : Corrélation du prix du pétrole brut avec celui des produits pétroliers	38
Figure 7-4 : Caractéristiques principales d'Antelomita 1 et d'Antelomita 2	
Figure 7-5 : Caractéristiques principales de Mandraka	
Figure 7-6 : Caractéristiques principales d'Andekaleka	
Figure 7-7 : Caractéristiques principales de Manandona	
Figure 7-8 : Caractéristiques principales de Volobe	
Figure 7-3 : Caractéristiques principales des IPP hydroélectriques	
Figure 7-9 : Caractéristiques principales des centrales thermiques existantes	
Figure 7-10 : Augmentation 2010-2012 de certains postes clés des comptes opérationnels.	
Figure 7-11 : Caractéristiques principales des candidats hydrauliques	
Figure 7-12 : Caractéristiques principales des candidats thermiques	
Figure 7-13 : Fonction de coût des unités thermiques de référence	
Figure 7-14 : Inter comparaison des candidats hydroélectriques et thermiques	
Figure 7-15 : Compétitivité relative de l'Eolien et du Photovoltaïque	
Figure 7-16 : Sensibilités à (i) une actualisation de 12% et à (ii) un prix du baril de 60 \$	
Figure 7-17 : Sensibilités à (i) une actualisation de 8% et à (ii) un prix du baril de 100 \$	
Figure 8-1 : Variabilité de la courbe de charge du RI Antananarivo (Année 2012)	
Figure 8-2 : Plan d'Expansion au Moindre Coût (PEMC) du RI Antananarivo	
Figure 8-3 : Plan d'Expansion au Moindre Coût (PEMC) du RI Toamasina	
Figure 8-4: Plan d'Expansion au Moindre Coût (PEMC) d'Ambositra	
Figure 8-5 : Plan d'Expansion au Moindre Coût (PEMC) d'Antsiranana	
Figure 8-6: Plan d'Expansion au Moindre Coût (PEMC) d'Ambilobe	
Figure 8-7 : Plan d'Expansion au Moindre Coût (PEMC) de Morondava	
Figure 9-1 : Coûts de construction et échéanciers des lignes d'interconnexion (k\$)	
Figure 9-2 : Plan d'Expansion au Moindre Coût (PEMC) du RIATA	
Figure 9-3 : Plan d'Expansion au Moindre Coût (PEMC) du RIDA	
Figure 10-1 : Analyse spatiale de BOENY, SAVA et SOFIA (Source ADER/IED)	
Figure 10-2 : Courbe de charge – année 1 – d'un village de 500 hab. (Source ADER/IED).	
Figure 10-3 : Synthèse des projets - région BOENY (Source ADER/IED)	
Figure 10-4 : Synthèse des projets - région SAVA (Source ADER/IED)	
Figure 10-5 : Synthèse des projets - région SOFIA (Source ADER/IED)	105

MdE-ORE-ADER-JIRAMA Page 18 sur 134

4 Liste des abréviations

ADER Agence pour le Développement de l'Electrification Rurale

AGR Activités Génératrices de Revenus

Bbl / bl Baril de pétrole

BT/MT/HT Basse Tension / Moyenne Tension / Haute Tension

BTS Basse Teneur en Souffre CENS Coût de l'Energie Non Servie

CP Comité de Pilotage CT Comité Technique

EOD Equilibre entre l'Offre et la Demande

FMI Fonds Monétaire International

GWh Giga-Wattheure (1 GWh = 1000 MWh)

INSEE Institut National de Statistiques et d'Etudes Economiques (France)

INSTAT Institut National de STATistiques (Madagascar)
IPD Indicateur du Potentiel de Développement

IPP Independent Power Producer (Producteur indépendant d'électricité)

J/GJ Joule / Gigajoule (1 GJ = 1 000 000 J; 3 600 J = 1 Wh)

JIRAMA Jiro sy Rano Malagasy kW Kilowatt (1 kW = 1 000 W)

kWh Kilowattheure (1 kWh = 1 000 Wh)

LOLP Loss Of Load Probability
MdE Ministère de l'Energie
MGA Malagasy Ariary

MOA Maitre (ou Maitrise) d'Ouvrage
MOE Maitre (ou Maitrise) d'Œuvre
MSI Mise en Service Industrielle
MW Mégawatt (1 MW = 1 000 kW)
MWh Mégawatheure (1 MWh = 1 000 kWh)

ND Non Disponible

NTIC Nouvelles Technologies de l'Information et de la Communication

ORE Office de Régulation de l'Electricité

P2RSE Projet de Redressement et de Restructuration du Secteur de l'Electricité

PEMC Plan d'Expansion au Moindre Coût PCI Pouvoir Calorifique Inférieur PCS Pouvoir Calorifique Supérieur

PIB Produit Intérieur Brut

PME Petites et Moyennes Entreprises

RGPH Recensement Général de la Population et de l'Habitat

RI Réseau Interconnecté

RIA Réseau Interconnecté d'Antananarivo

RIATA Réseau Interconnecté d'Antananarivo, de Toamasina et d'Ambositra RIDA Réseau Interconnecté de Diego (i.e. Antsiranana) et d'Ambilobe

RIT Réseau Interconnecté de Toamasina

TAC Turbine A Combustion

TCAM Taux de Croissance Annuel Moyen USD US Dollar (Dollar Américain)

W / Wc Watt (unité de mesure de puissance) / Watt-crête (idem pour le photovoltaïque)

Wh Wattheure (unité de mesure d'énergie)

5 Introduction

5.1 Contexte de l'étude

Dans le cadre de l'Accord de financement IDA pour le Redressement et la Restructuration du Secteur de l'Electricité - P2RSE (crédit 4223-MAG), la Banque Mondiale a décidé de procéder à une réallocation du reliquat du budget non utilisé suite à la crise socio-politique de 2009. Un programme de travaux à mener a été établi à cet effet, afin de contribuer à la réduction de la pauvreté. Ce réaménagement de fonds a été décidé en total respect des objectifs du Projet initial, et a été élaboré avec le concours des services techniques du Ministère de l'Energie (MdE), de l'Office de Régulation de l'Electricité (ORE), de l'Agence de Développement de l'Electrification Rurale (ADER) et de la JIRAMA.

Ainsi, les structures de coûts du système électrique ayant subi d'importantes modifications depuis les derniers plans de développement officiels du secteur de l'électricité des systèmes électriques (datant de 2007), une réactualisation des Plans d'Expansion au Moindre Coût s'avérait éminemment nécessaire.

5.2 Objectifs de la présente étude

La vocation de l'étude est de contribuer à l'amélioration du système de planification du secteur de l'électricité. Selon les Termes de Références (TDRs) la présente étude se propose :

- De réactualiser les Plans de Développement de la production des systèmes électriques de trois réseaux d'exploitation de la JIRAMA et de trois régions pour l'électrification Rurale en construisant et validant une méthodologie partagée par toutes les parties prenantes du projet;
- D'établir des recommandations sur la conception du « Système Relationnel de Planification » afin qu'il réponde aux objectifs visés : amélioration du système de planification du secteur de l'électricité.

Les trois réseaux d'exploitation de la JIRAMA regroupent les RI d'Antananarivo et de Toamasina, et les exploitations d'Ambositra, d'Antsiranana, d'Ambilobe et de Morondava.

Les trois régions pour l'Electrification Rurale sont celles de BOENY, de SAVA et de SOFIA.

Page 20 sur 134

5.3 Organisation mise en place pour l'étude

Le **Consultant** fait partie du **Comité Technique** (**CT**) qu'il anime en tant que principal contributeur et en tant qu'expert garant du niveau de qualité de l'étude.

Le CT est composé des représentants des entités suivantes :

- Ministère de l'Energie (MdE),
- Office de Régulation de l'Electricité (ORE), correspondant principal du Consultant,
- Agence de Développement de l'Electrification Rurale (ADER),
- Jiro sy Rano Malagasy (JIRAMA).

Le CT respecte les règles de l'art et s'appuie sur les compétences internes au MdE, à l'ORE, à la JIRAMA et à l'ADER qui sont mises à contribution pour la réalisation de l'étude. Le périmètre ainsi défini est le Collectif de travail. Ce Collectif de travail partage en son sein, l'ensemble des données et méthodologies afin de construire une vision commune.

Le CT rend compte au **Comité de Pilotage** (**CP**) dont le rôle est d'apporter un regard critique ultime avant approbation de l'ensemble des travaux du Collectif qui ont été validés par le CT. Le CP est composé des représentations des mêmes entités : MdE, ORE, ADER et JIRAMA.

5.4 Programme de travail

L'étude a été réalisée par le Collectif sur la base des principales étapes détaillées ci-après.

5.4.1 Comité Technique n° 1 (CT1) – 4 et 5 avril 2013

- Organisation du programme travail, partage des tâches et responsabilisation;
- Démarrage de l'étude et de la collecte des données ;
- Analyse des données disponibles ;
- Partage des méthodologies utilisées par les différentes entités.

5.4.2 Période du 8 au 19 avril 2013

- Transmission au Consultant des données et études complémentaires ;
- Analyse des données et méthodologies utilisées ;
- Point sur les premières analyses et travaux à réaliser d'ici le CT2 ;
- Conférence téléphonique avec toutes les parties prenantes (16/04/13);
- Démarrage de la rédaction du « Rapport Préliminaire sur l'état des lieux ».

5.4.3 Comité Technique n° 2 (CT2) – 22 au 26 avril 2013

- Poursuite de l'analyse des données de base de l'étude ;
- Fin des prévisions de la demande de toutes les exploitations concernées par le projet ;
- Choix définitif des paramètres/critères clés de planification (taux d'actualisation, LOLP);
- Principes de modélisation des parcs de production existants ;
- Définition des analyses de sensibilités (pour pesage de la résistance des plans d'expansion, des réseaux et des régions, au champ des futurs possibles) ;
- Précision des études/analyses complémentaires attendues ;
- Retour d'expérience sur le travail collectif effectué et premières recommandations pour la conception du « Système Relationnel de Planification » (« SyRep ») ;
- Soumission du « Rapport Préliminaire sur l'état des lieux » au Comité de Pilotage (26/04/13).

5.4.4 Période du 29 avril au Comité Technique n° 3 (CT3)

- Poursuites des travaux de construction des PEMC;
- Etude des candidats hydrauliques, des candidats thermiques de référence et des autres équipements potentiels de production ;
- Analyse des comptes opérationnels des 6 exploitations de la JIRAMA ;
- Contributions individuelles aux recommandations pour la conception du « SyReP »;
- Conférences téléphoniques avec toutes les parties prenantes (10/05/13, 17/05/13 et 07/06/13);
- Démarrage de la rédaction de la version provisoire du « Rapport Définitif » ;
- Réunions de travail entre le Consultant et le CP à Paris (12/06/13 et 13/06/13).

5.4.5 Comité Technique n° 3 (CT3) – 17 au 21 juin 2013

- Fin des PEMC des 6 réseaux JIRAMA et des Plans Directeurs des 3 régions ADER ;
- Fin des PEMC des interconnections proposées ;
- Recommandations sur la conception du « SyReP » ;
- Finalisation de la version provisoire du « Rapport Définitif ».

MdE-ORE-ADER-JIRAMA Page 22 sur 134

6 Prévision de la demande de trois réseaux d'exploitation de la JIRAMA

Liminaire

La projection effectuée dans le cadre de cette étude s'entend à situation géopolitique inchangée. Il est en effet difficile de formuler des hypothèses à ce sujet car elles seraient forcément hasardeuses.

En raison du manque de données sur un certain nombre de paramètres essentiels à une prévision détaillée, l'exercice ci-dessous est mené à un niveau relativement agrégé. Les éléments disponibles sont néanmoins jugés suffisants pour pouvoir correctement cerner la trajectoire de la demande des exploitations étudiées jusqu'à l'horizon 2030.

6.1 Paramètres macro-économiques

6.1.1 Activité économique globale (PIB)

L'histoire récente de Madagascar est marquée par l'indépendance de l'île en 1960. Un Directoire militaire dirige le pays à partir de 1972 avant que ne soit proclamée la deuxième République en 1975. Elle perdurera jusqu'en 1991 : proclamation de la troisième République.

Le début des années 1990s voit la mise en place d'un processus de libéralisation de l'économie malgache qui se heurte à de fortes réticences. Cette période est caractérisée par une faible croissance de l'économie. Du point de vue du secteur électrique, les caprices de l'économie affectent surtout la consommation des clients MT.

La situation redevient « normale » à la fin de cette décennie. On note la création du régime de zone franche correspondant à des conditions administratives et financières attractives pour les investisseurs, afin de faciliter l'installation d'activités nouvelles en grande partie industrielles. Le régime de zone franche n'est pas étranger au redémarrage économique de l'île.

En dehors de la perturbation exceptionnelle de 2002 (baisse du PIB de 12,4%) et de quelque effet rebond, la croissance économique de l'île va globalement et tendanciellement s'améliorer jusqu'à la crise de 2009 (baisse du PIB de 4,1%). Depuis, le redémarrage de la croissance reste atone mais on note une volonté politique/nationale de soutenir/construire durablement une croissance économique forte.

MdE-ORE-ADER-JIRAMA Page 23 sur 134

C'est dans le cadre de ces efforts entrepris, dont les résultats commencent à être perceptibles (augmentation du PIB de près de 2% en 2011 et en 2012), que la Direction Générale de l'Economie prévoit un taux de croissance du PIB de 2,8% pour l'année 2013. Cette cible à court terme est confortée par les prévisions du FMI. Dans le cadre de notre étude on considère donc une poursuite de l'effort de développement pour les années à venir :

- Le Scénario Probable est guidé par une évolution à la hausse du taux de croissance du PIB qui atteint 5% en 2017. Il est ensuite maintenu constant jusqu'en 2030 ;
- Le Scénario Volontariste est guidé par une poursuite de cette évolution à la hausse du taux de croissance du PIB qui est projeté atteindre 7% en 2022. Il est ensuite maintenu constant jusqu'en 2030.

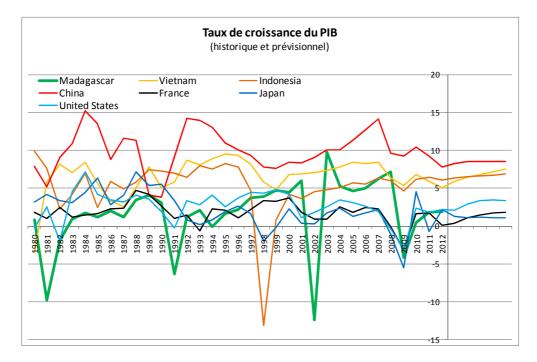


Figure 6-1 : Croissance historique du PIB à Madagascar et comparaisons (Source : FMI)

Comme l'illustre le *benchmark* ci-dessus avec quelques pays, les hypothèses retenues correspondent à une croissance tendancielle soutenue et durable voire, dans le Scénario Volontariste, exemplaire.

Avec un Taux de Croissance Annuel Moyen (TCAM) de 7%/an sur la période 2012-2030 dans le Scénario Probable (respectivement de 9%/an dans Scénario Volontariste), le secteur

secondaire est le moteur de cette croissance. Ceci suppose la poursuite du développement des zones franches de même qu'une stabilité des politiques, et des régulations efficaces des différents secteurs de l'économie malgache.

Les autres secteurs de l'économie bénéficient aussi de ces bons fondamentaux :

- Le secteur tertiaire soutient aussi la croissance (+4,9%/an en moyenne dans le Scénario Probable et +5,4%/an en moyenne dans le Scénario Volontariste);
- Le secteur primaire maintient une productivité croissante (+3,2%/an en moyenne de contribution au PIB global dans le Scénario Probable et +5,3%/an en moyenne dans le Scénario Volontariste).

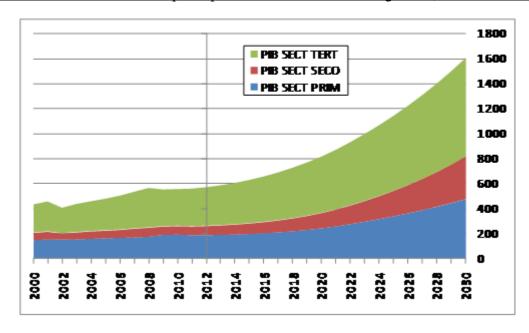


Figure 6-2: Evolution historique et prévisions du PIB de Madagascar (millions MGA₁₉₈₄)

6.1.2 Démographie

La prévision de la croissance démographique, autre déterminant fondamental de la demande en électricité, est disponible par Fokontany (circonscription administrative la plus petite). Elle est issue des "Projections et perspectives démographiques de Madagascar (Recensement général de la Population et de l'Habitat 'RGPH' INSTAT – Projections et perspectives démographiques – base RGPH 1993)".

MdE-ORE-ADER-JIRAMA Page 25 sur 134

Ce document proposait initialement trois scénarios d'évolution démographique :

- Croissance faible à 2,4%/an;
- Croissance moyenne à 2,8%/an;
- Croissance forte à 3%/an.

L'analyse historique récente révèle que la croissance de la population a été de +2,9%/an sur la période 2000-2012 (*Source : MdE*), valeur située entre les taux de croissance moyenne et forte initialement établis.

En absence d'étude prospective récente, on considère donc que la croissance démographique observée sur 2000-2012 (+2,9%/an) est reconduite sur la période 2012-2030 et gouverne la prévision de demande d'électricité effectuée dans le cadre de notre étude, pour le Scénario Probable.

Pour le Scénario Volontariste, on retient le taux de croissance de 3%/an, niveau correspondant au scénario haut de l'étude démographique.

6.2 Principaux déterminants de la demande du RI Antananarivo (RIA)

6.2.1 Accroissement du nombre de clients résidentiels

a) Scénario Probable

On considère que le taux de couverture (rapport entre la population de la zone électrifiée de l'exploitation JIRAMA et la population totale du périmètre administratif correspondant), de 54% en 2012, croît régulièrement pour atteindre 60% en 2030 afin d'atteindre les objectifs du millénaire.

Concomitamment, le taux de desserte (rapport entre le nombre de personnes bénéficiant du service de l'électricité et la population de la zone électrifiée), qui est de 45% en 2012, bénéficie d'une croissance régulière pour atteindre 50% en 2030.

Le taux d'accès à l'électricité induit est de 30% en 2030 (produit du taux de couverture par le taux de desserte), soit une augmentation de 25% par rapport à sa valeur de 2012.

Ces différents taux sont estimés en considérant que chaque abonné est équipé en moyenne d'un compteur et alimente en moyenne un ménage.

Compte tenu de la croissance démographique, cela signifie un doublement du nombre de clients sur la période 2012-2030, donc un soutien important au branchement de nouveaux clients : plus de 15.000 branchements en moyenne par an sur la période 2014-2030 (à mettre en regard des 7.500 branchements par an effectués en moyenne sur les années 2000 à 2012).

b) <u>Scénario Volontariste</u>

Ce Scénario diffère du Scénario Probable de par un accroissement du nombre de clients résidentiels plus important : 10.000 branchements de plus sont réalisés sur la période. Cet objectif permet de maintenir un taux d'accès au service de l'électricité de 30%, identique à celui du Scénario Probable.

6.2.2 Consommation moyenne des clients résidentiels

Le taux d'équipement des ménages en matériels électroménagers suit des courbes en « S ». En absence de mesures spécifiques de ces taux d'équipement, l'évolution de la consommation moyenne des clients résidentiels est ici estimée sur la base des consommations historiques.

Pour les nouveaux clients résidentiels, la consommation moyenne spécifique est estimée à environ 870 kWh/an pour des 10 premières années. Ce niveau correspondant à l'équipement moyen suivant : 5 lampes, 1 radio, 1 TV, 1 réfrigérateur, 1 ventilateur, 1 ordinateur, soit environ 1,5 kW installés et un facteur de charge moyen de l'ordre de 600 heures par an. A noter que ce facteur de charge est révélateur de l'importante contribution à la pointe de la consommation résidentielle.

Au fil des années, la consommation spécifique de ces nouveaux clients évolue à la hausse pour atteindre environ 1180 kWh/an 10 ans plus tard, 1530 kWh/an 20 ans plus tard, 1870 kWh/an 30 ans plus tard, puis 2170 kWh/an 40 ans plus tard. Au final, sous l'effet de la forte augmentation du nombre de clients, la croissance de la consommation spécifique des anciens clients est en grande partie compensée par celle, plus faible, des nouveaux accédants au service de l'électricité. Ceci induit néanmoins une légère croissance de la consommation spécifique moyenne de l'ensemble des clients résidentiels : elle est de +11 kWh/an/client jusqu'en 2020, et de +7 kWh/an/client sur les années suivantes.

6.2.3 Autres principaux déterminants de la demande du RI Antananarivo

Les autres principaux postes de la consommation, associés à leurs déterminants respectifs, sont les suivants :

- La consommation des clients industriels MT/HT, qui est anticipée évoluer comme le PIB du secteur secondaire ;
- La consommation des autres clients MT/HT, qui est anticipée évoluer comme le PIB du secteur tertiaire;
- La consommation des clients PME/Services BT, qui est anticipée évoluer comme le PIB du secteur tertiaire ;
- La consommation pour l'éclairage public, qui est anticipée croître de +4% par an (valeur jugée raisonnable car proche du taux de croissance du nombre de clients résidentiels).

MdE-ORE-ADER-JIRAMA Page 28 sur 134

Le niveau des ventes est estimé à partir de l'ensemble des hypothèses précédentes. Pour estimer la demande à la production à partir des prévisions de ventes, les hypothèses complémentaires suivantes sont effectuées :

- Mise en place d'un programme de réduction des pertes non techniques (fraude, relevés, fichiers clientèle...) afin de retrouver un niveau acceptable à l'horizon 2020;
- Amélioration continue du rendement technique du réseau, donc de sa productivité sur toute la période étudiée.

Sur ces bases, le rendement global du réseau (rapport des ventes sur la production), qui est de 67% en 2012, est prévu atteindre environ 75% en 2020. On projette ensuite une croissance tendancielle de ce rendement global permettant d'atteindre 80% à l'horizon 2030 (grâce à la poursuite de l'amélioration continue de la productivité du réseau).

L'estimation de la puissance de pointe adressée à la production est estimée à partir de la projection du facteur de charge (rapport entre les puissances moyenne et maximale adressées à la production). Ce facteur de charge, qui est de 57% en 2013, est prévu atteindre la valeur de 60% en 2030 sous l'effet des actions de maîtrise de la demande en électricité (programmes existants poursuivis, lampes à basse consommation notamment), qui impactent la croissance de la pointe de demande.

6.3 Prévision de la demande du RI Antananarivo

La demande en énergie électrique jusqu'à l'horizon 2030 est construite sur la base des hypothèses précédemment établies. Scénarios Probable puis Volontariste sont principalement différenciés par les hypothèses d'évolution structurelle du PIB et de la démographie. Sont présentées ci-après les synthèses des résultats de ces prévisions (les résultats détaillés sont disponibles en annexes 12.1 et 12.2 avec les principales étapes ayant permis leur réalisation).

6.3.1 Scénario Probable

La croissance économique soutenue et l'amélioration de la performance du secteur de l'électricité renforcent durablement le développement et l'attractivité du pays. Ce contexte propice conduit à une croissance moyenne annuelle des besoins prévisionnels de production et de puissance de pointe sur le RI Antananarivo respectivement de l'ordre de 4,3% et de 4% sur

MdE-ORE-ADER-JIRAMA Page 29 sur 134

la période 2013-2030. Cette évolution permet de satisfaire une croissance de la consommation de l'ordre de 5,4%.

Figure 6-3 : Prévision de la demande du RI Antananarivo – Scénario Probable

RI ANTANANARIVO	2013	2014	2015	2016	2017	2018	2019	2020	2025	2030	TCAM
VENTES (MWh)	654 462	682 837	714 360	752 630	795 046	839 945	887 449	937 691	1 225 787	1 602 461	5,4%
HT/MT	277 099	289 558	304 257	321 474	341 542	362 955	385 814	410 227	560 051	771 311	6,2%
- Industriel MT/HT	143583	150705	159205	169267	181115	193933	207806	222832	319332	465870	7,2%
- Autres MT	133515	138853	145052	152207	160426	169023	178008	187394	240719	305441	5,0%
BASSE TENSION	377 363	393 280	410 103	431 156	453 504	476 989	501 635	527 464	665 736	831 150	4,8%
RESIDENTIEL	338 040	352 384	367 405	386 402	406 410	427 451	449 542	472 703	595 832	742 862	4,7%
PME/PMI	34 402	35 778	37 375	39 219	41 336	43 551	45 866	48 285	62 025	78 702	5,0%
ECLAIRAGE PUBLIC	4 921	5 118	5 323	5 536	5 757	5 987	6 227	6 476	7 879	9 586	4,0%
PRODUCTION	2013	2014	2015	2016	2017	2018	2019	2020	2025	2030	
PRODUCTION BRUTE (MWh)	972 225	998 101	1 027 688	1 065 910	1 108 745	1 153 698	1 200 842	1 250 254	1 581 661	2 003 077	4,3%
POINTE (kW)	196 433	200 929	206 137	213 033	220 798	228 928	237 433	246 324	306 178	381 103	4,0%
Rendement global	67,3%	68,4%	69,5%	70,6%	71,7%	72,8%	73,9%	75,0%	77,5%	80,0%	1,0%
Facteur de charge	56,5%	56,7%	56,9%	57,1%	57,3%	57,5%	57,7%	57,9%	59,0%	60,0%	0,4%

6.3.2 Scénario Volontariste

Dans ce scénario, la croissance de la demande obtenue est la conjonction de nombreuses situations favorables. Cette croissance économique exceptionnelle conduit à une croissance moyenne annuelle des besoins prévisionnels de production et de puissance de pointe sur le RI Antananarivo respectivement de l'ordre de 5,2% et de 4,8% sur la période 2013-2030, permettant de satisfaire une croissance de la consommation de l'ordre de 6,2%.

Figure 6-4: Prévision de la demande du RI Antananarivo – Scénario Volontariste

RI ANT ANANARIVO	2013	2014	2015	2016	2017	2018	2019	2020	2025	2030	TCAM
VENTES (MWh)	654 462	682 837	714 443	752 656	795 083	841 699	892 978	949 496	1 310 548	1 827 483	6,2%
HT/MT	277 099	289 558	304 257	321 474	341 542	364 524	390 863	421 094	640 104	985 456	7,7%
- Industriel MT/HT	143583	150705	159205	169267	181115	195242	212033	231964	388056	653897	9,3%
- Autres MT	133515	138853	145052	152207	160426	169282	178829	189130	252048	331558	5,5%
BASSE TENSION	377 363	393 280	410 186	431 182	453 542	477 174	502 116	528 402	670 444	842 027	4,8%
RESIDENTIEL	338 040	352 384	367 488	386 428	406 448	427 569	449 811	473 194	597 621	747 010	4,8%
PME/PMI	34 402	35 778	37 375	39 219	41 336	43 618	46 078	48 732	64 944	85 431	5,5%
ECLAIRAGE PUBLIC	4 921	5 118	5 323	5 536	5 757	5 987	6 227	6 476	7 879	9 586	4,0%
PRODUCTION	2013	2014	2015	2016	2017	2018	2019	2020	2025	2030	
PRODUCTION BRUTE (MWh)	972 225	998 101	1 027 808	1 065 948	1 108 797	1 156 107	1 208 323	1 265 995	1 691 029	2 284 353	5,2%
POINTE (kW)	196 433	200 929	206 161	213 040	220 808	229 406	238 912	249 425	327 349	434 618	4,8%
Rendement global	67,3%	68,4%	69,5%	70,6%	71,7%	72,8%	73,9%	75,0%	77,5%	80,0%	1,0%
Facteur de charge	56,5%	56,7%	56,9%	57,1%	57,3%	57,5%	57,7%	57,9%	59,0%	60,0%	0,4%

MdE-ORE-ADER-JIRAMA Page 30 sur 134

6.4 Principaux déterminants de la demande des autres exploitations JIRAMA

Pour effectuer la prévision de la demande des autres exploitations JIRAMA, les déterminants utilisés sont quasi identiques à ceux du RI Antananarivo. C'est notamment le cas pour la consommation des Autres Industriels MT/HT, des Autres MT/HT, des PME/Services BT, de l'Eclairage public pour lesquels les indexations sont identiques à celles utilisées pour le RI Antananarivo. Les principales différences avec le RI Antananarivo portent essentiellement sur les paramètres suivants :

- Le taux de desserte;
- L'augmentation annuelle du nombre de clients résidentiels ;
- La consommation annuelle moyenne par abonné résidentiel ;
- Le rendement global du réseau.

Figure 6-5 : Principales différences d'hypothèses avec RI Antananarivo

Taux de desserte
Augmentation moyenne annuelle du nombre client résidentiel
Consommation annuelle par abonné Rés. (kWh)
Rendement brut (Pbrute à Ventes)

Reseau 1								
NARIVO	RI TOAI	MASINA		AMBOSITRA				
2030	2012	2030		2012	2030			
50%	57,2%	60%		42,8%	50%			
15 000		2000			300			
1 408	1541	1707		737	903			
80,0%	65,0%	80,0%		78,3%	90,0%			
	2030 50% 15 000 1 408	NARIVO RI TOAI 2030 2012 50% 57,2% 15 000 1 408 1541	NARIVO RI TOAMASINA 2030 2012 2030 50% 57,2% 60% 15 000 2000 1408 1541 1707	NARIVO RI TOAMASINA 2030 2012 2030 50% 57,2% 60% 15 000 2000 1408 1541 1707	NARIVO RI TOAMASINA AMBO 2030 2012 2030 2012 50% 57,2% 60% 42,8% 15 000 2000 1408 1541 1707 737			

Taux de desserte
Augmentation moyenne annuelle du nombre client résidentiel
Consommation annuelle par abonné Rés. (kWh)
Rendement brut (Pbrute à Ventes)

Reseau Z									
ANTSIR	ANANA		AMBILOBE						
2012	2030 2012 203								
63,0%	75%		52,8%	55%					
	1000			80					
894	1178		1105	1471					
81,2%	90,0%		55,9%	75,0%					

Réseau 3										
MORONDAVA										
2012	2012 2030									
43,3%	50%									
	250									
878	885									
71,7%	85,0%									

Ces paramètres sont liés à la situation de chacune des exploitations en 2012. Les différences entre exploitation, qui peuvent actuellement être importantes, seront fortement atténuées par la mise en place d'actions particulièrement engagées.

A noter que, comme pour le RI Antananarivo, l'évolution de la consommation moyenne des clients résidentiels est modeste, la forte croissance du nombre de clients résidentiels réduisant

la croissance de la consommation moyenne des clients (les nouveaux clients consomment moins que les anciens).

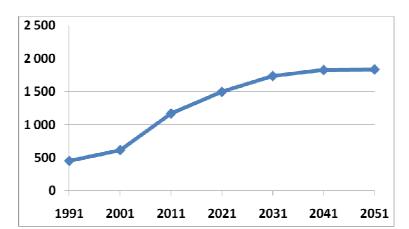


Figure 6-6 : Exemple d'évolution de la consommation de clients résidentiels (kWh/an)

6.5 Prévision de la demande des autres exploitations

Seuls les Scénarios Probables des prévisions de la demande des autres exploitations que RIA sont présentés ci-après. Les résultats des Scénarios Volontaristes de chacune de ces exploitations sont fournis en annexe 12.3.

6.5.1 Prévision de la demande du RI Toamasina

Les croissances moyennes annuelles des besoins prévisionnels de production et de puissance du RI Toamasina, qui sont respectivement de l'ordre de 3,8% et de 3,4% sur 2013-2030, permettent de satisfaire une croissance de la consommation de l'ordre de 5%.

RI TOAMASINA 2013 2014 2015 2016 2017 2018 2019 2020 202 2030 **TCAM VENTES (MWh)** 69 438 72 544 75 964 79 722 83 843 88 213 92 838 97 730 125 132 159 871 5.0% 21 374 22 304 23 397 26 153 27 725 29 394 31 167 41 849 56 425 24 672 5,9% 7,2% 5,0% 7867 8257 8723 9274 9923 10625 11386 12209 17496 25525 Industriel MT/HT - Autres MT BASSE TENSION RESIDENTIEL 13507 14047 14674 15398 16230 17099 1800 1895 2435 30900 50 240 48 494 55 049 53 146 60 488 58 395 63 444 66 563 64 264 83 284 80 388 103 446 99 826 48 064 52 567 57 690 4,6% 61 251 50 747 1 381 PMF/PMI 1 036 1 077 1 125 1 181 1 244 1 311 1 453 1 867 2 369 5.0% ECLAIRAGE PUBLIC 723 752 813 84 1 252 4,0% 695 782 1 029 **PRODUCTION** 2013 2014 2015 2016 2017 2018 2019 2020 PRODUCTION BRUTE (MWh) 105 502 121 242 131 086 165 020 199 839 108 842 116 690 126 040 136 387 POINTE (kW) 23 482 24 122 24 842 25 644 26 533 27 468 28 449 29 477 34 944 41 478 3,4% Rendement globa 70,0% 70,8% 80,0% Facteur de charge 51,5% 51,7% 52,4% 55,0% 0.4%

Figure 6-7 : Prévision de la demande du RI Toamasina – Scénario Probable

MdE-ORE-ADER-JIRAMA Page 32 sur 134

6.5.2 Prévision de la demande d'Ambositra

Les croissances moyennes annuelles des besoins prévisionnels de production et de puissance d'Ambositra, qui sont respectivement de l'ordre de 5,2% et de 4,4% sur 2013-2030, permettent de satisfaire une croissance de la consommation de l'ordre de 6%.

Figure 6-8 : Prévision de la demande d'Ambositra – Scénario Probable

	2014	2015	2016	2017	2018	2019	2020	2025	2030	TCAM
3 078	3 241	3 426	3 636	3 870	4 130	4 415	4 727	6 314	8 337	6,0%
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	
3 078	3 241	3 426	3 636	3 870	4 130	4 415	4 727	6 314	8 337	6,0%
2 695	2 843	3 011	3 200	3 412	3 647	3 908	4 194	5 632	7 476	6,2%
339	352	368	386	407	429	452	475	611	775	5,0%
44	46	48	50	52	54	56	58	71	86	4,0%
2013	2014	2015	2016	2017	2018	2019	2020	2025	2030	
3 897	4 070	4 268	4 492	4 744	5 023	5 327	5 660	7 277	9 263	5,2%
1 021	1 057	1 099	1 147	1 202	1 261	1 327	1 398	1 727	2 115	4,4%
79,0%	79,6%	80,3%	80,9%	81,6%	82,2%	82,9%	83,5%	86,8%	90,0%	0,8%
43,6%	43,9%	44,3%	44,7%	45,1%	45,5%	45,8%	46,2%	48,1%	50,0%	0,8%
	0 0 3 078 2 695 339 44 2013 3 897 1 021 79,0%	0 0 0 0 0 0 3 078 3 241 2 695 2 843 339 352 44 46 2013 2014 3 897 4 070 1 021 1 057 79,0% 79,6%	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 3 078 3 241 3 426 3 636 2 695 2 843 3 011 3 200 339 352 368 386 44 46 48 50 2013 2014 2015 2016 3 897 4 070 4 268 4 492 1 021 1 057 1 099 1 147 79,0% 79,6% 80,3% 80,9%	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 078 3 241 3 426 3 636 3 870 2 695 2 843 3 011 3 200 3 412 339 352 368 386 407 44 46 48 50 52 2013 2014 2015 2016 2017 3 47 474	0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 4 130 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0	0 0	0 2 0 2	0 0

6.5.3 Prévision de la demande d'Antsiranana

Les croissances moyennes annuelles des besoins prévisionnels de production et de puissance d'Antsiranana, qui sont respectivement de l'ordre de 5,8% et de 5,2% sur 2013-2030, permettent de satisfaire une croissance de la consommation de l'ordre de 6,4%.

<u>Figure 6-9 : Prévision de la demande d'Antsiranana – Scénario Probable</u>

ANTSIRANANA	2013	2014	2015	2016	2017	2018	2019	2020	2025	2030	TCAM
VENTES (MWh)	38 814	40 903	43 291	46 011	49 098	52 420	55 992	59 829	81 429	110 871	6,4%
HT/MT	22 195	23 234	24 465	25 913	27 609	29 429	31 383	33 483	46 630	65 805	6,6%
- Industriel MT/HT	15706	16485	17415	18516	19812	21214	22731	24375	34931	50960	7,2%
- Autres MT	6489	6749	7050	7398	7797	8215	8652	9108	11700	14845	5,0%
BASSE TENSION	16 619	17 669	18 827	20 098	21 490	22 992	24 609	26 346	34 798	45 066	6,0%
RESIDENTIEL	13 076	13 984	14 979	16 066	17 248	18 530	19 919	21 417	28 511	37 130	6,3%
PME/PMI	3 044	3 165	3 307	3 470	3 657	3 853	4 058	4 272	5 487	6 963	5,0%
ECLAIRAGE PUBLIC	500	520	541	562	585	608	633	658	801	974	4,0%
PRODUCTION	2013	2014	2015	2016	2017	2018	2019	2020	2025	2030	
PRODUCTION BRUTE (MWh)	47 539	49 797	52 391	55 353	58 720	62 327	66 187	70 315	93 015	123 190	5,8%
POINTE (kW)	9 981	10 392	10 867	11 413	12 035	12 699	13 406	14 159	18 199	23 438	5,2%
Rendement global	81,6%	82,1%	82,6%	83,1%	83,6%	84,1%	84,6%	85,1%	87,5%	90,0%	0,6%
Facteur de charge	54,4%	54,7%	55,0%	55,4%	55,7%	56,0%	56,4%	56,7%	58,3%	60,0%	0,6%
									1		

6.5.4 Prévision de la demande d'Ambilobe

Les croissances moyennes annuelles des besoins prévisionnels de production et de puissance d'Ambilobe, qui sont respectivement de l'ordre de 3,4% et de 3,3% sur 2013-2030, permettent de satisfaire une croissance de la consommation de l'ordre de 5,1%.

Figure 6-10 : Prévision de la demande d'Ambilobe – Scénario Probable

AMBILOBE	2013	2014	2015	2016	2017	2018	2019	2020	2025	2030	TCAM
VENTES (MWh)	2 788	2 925	3 075	3 240	3 421	3 614	3 821	4 041	5 123	6 451	5,1%
HT/MT	0	0	0	0	0	0	0	0	0	0	
- Industriel MT/HT	0	0	0	0	0	0	0	0	0	0	
- Autres MT	0	0	0	0	0	0	0	0	0	0	
BASSE TENSION	2 788	2 925	3 075	3 240	3 421	3 614	3 821	4 041	5 123	6 451	5,1%
RESIDENTIEL	2 113	2 223	2 342	2 472	2 611	2 761	2 922	3 096	3 910	4 913	5,1%
PME/PMI	658	684	715	750	790	833	877	923	1 186	1 505	5,0%
ECLAIRAGE PUBLIC	17	18	18	19	20	21	21	22	27	33	4,0%
PRODUCTION	2013	2014	2015	2016	2017	2018	2019	2020	2025	2030	
PRODUCTION BRUTE (MWh)	4 895	5 042	5 206	5 388	5 590	5 805	6 034	6 277	7 351	8 602	3,4%
POINTE (kW)	1 129	1 162	1 199	1 241	1 286	1 335	1 387	1 442	1 683	1 964	3,3%
Rendement global	57,0%	58,0%	59,1%	60,1%	61,2%	62,3%	63,3%	64,4%	69,7%	75,0%	1,6%
Facteur de charge	49,5%	49,5%	49,5%	49,6%	49,6%	49,6%	49,7%	49,7%	49,8%	50,0%	0,1%

6.5.5 Prévision de la demande de Morondava

Les croissances moyennes annuelles des besoins prévisionnels de production et de puissance Morondava, qui sont respectivement de l'ordre de 4,1% et de 3,3% sur 2013-2030, permettent de satisfaire une croissance de la consommation de l'ordre de 5,1%.

<u>Figure 6-11 : Prévision de la demande de Morondava – Scénario Probable</u>

MORONDAVA	2013	2014	2015	2016	2017	2018	2019	2020	2025	2030	TCAM
VENTES (MWh)	5 964	6 162	6 396	6 669	6 984	7 327	7 698	8 098	10 570	13 905	5,1%
HT/MT	1 437	1 501	1 577	1 666	1 769	1 879	1 997	2 122	2 888	3 963	6,1%
- Industriel MT/HT	706	741	782	832	890	953	1021	1095	1569	2290	7,2%
- Autres MT	731	761	795	834	879	926	975	1027	1319	1673	5,0%
BASSE TENSION	4 527	4 660	4 819	5 004	5 215	5 447	5 701	5 976	7 682	9 941	4,7%
RESIDENTIEL	3 339	3 425	3 528	3 650	3 789	3 945	4 120	4 312	5 547	7 236	4,7%
PME/PMI	1 151	1 197	1 250	1 312	1 383	1 457	1 534	1 615	2 075	2 633	5,0%
ECLAIRAGE PUBLIC	37	39	40	42	43	45	47	49	59	72	4,0%
PRODUCTION	2013	2014	2015	2016	2017	2018	2019	2020	2025	2030	
PRODUCTION BRUTE (MWh)	8 234	8 421	8 654	8 934	9 264	9 624	10 014	10 434	13 000	16 358	4,1%
POINTE (kW)	1 964	1 991	2 028	2 076	2 135	2 199	2 269	2 345	2 805	3 395	3,3%
Rendement global	72,4%	73,2%	73,9%	74,7%	75,4%	76,1%	76,9%	77,6%	81,3%	85,0%	0,9%
Facteur de charge	47,9%	48,3%	48,7%	49,1%	49,5%	50,0%	50,4%	50,8%	52,9%	55,0%	0,8%

7 Préparation des PEMC des trois réseaux d'exploitation de la JIRAMA

7.1 Paramètres clés de la planification

L'étude s'étend sur la période 2013-2030.

L'ensemble des calculs est conduit à monnaie constante, c'est-à-dire sans tenir compte de l'inflation. Les biens et services dont la hausse des prix est supérieure (ou inférieure) à l'inflation sont affectés d'une dérive positive (ou négative).

Tous les coûts sont considérés hors taxes dans l'étude (étude hors biais potentiellement induits par la fiscalité).

Tous les coûts de cette étude sont exprimés en Dollar Américain (USD ou \$) de l'année 2012. La parité retenue avec l'Ariary (MGA) est de 2200 MGA pour 1 USD ou 1 \$ (moyenne annuelle observée en 2012) sans dérive.

7.1.1 Taux d'actualisation

Le taux d'actualisation « a » permet de comparer des dépenses ou des recettes qui ne sont pas effectuées au même moment. Il représente un taux d'intérêt normatif traduisant la préférence pour le présent de tout investisseur. Ainsi, un flux financier survenant dans « n » années aura la même valeur qu'un flux financier survenant dans l'année en cours divisé par $(1+a)^n$.

Le taux d'actualisation est habituellement fixé par les Pouvoirs Publics pour les investissements des sociétés nationales ou par les organismes financiers. Il évolue généralement entre 8% et 12% et est d'autant plus élevé que les ressources financières sont rares, ce qui permet d'arbitrer entre les différents types d'équipements de production à mettre en service.

Dans le cadre de notre étude, nous retenons une valeur de 10%. Cette valeur correspond au milieu de la fourchette généralement admise par les bailleurs de fonds pour Madagascar.

MdE-ORE-ADER-JIRAMA Page 35 sur 134

7.1.2 Critère de qualité de service

La qualité de service que le système électrique veut assurer à sa clientèle est souvent exprimée en probabilité de défaillance (Loss Of Load Probability ou LOLP).

On retient pour notre étude un LOLP de 24 heures par an pour le RI Antananarivo

Le critère de qualité de service dépend des capacités financières et du préjudice que les clients sont prêts à supporter. Il en résulte un équilibre économique liant qualité de service et coût de réduction de la défaillance pour le système électrique et ses clients.

Modifier le critère de qualité de service se traduit généralement par la modification du volume d'équipement de pointe du système électrique considéré.

7.2 Les combustibles

7.2.1 Les combustibles utilisables

Les centrales thermiques de Madagascar utilisent actuellement deux types de combustibles dérivés du pétrole : le Fuel lourd de pouvoir calorifique inférieur (PCI) égal à 40,8 GJ par tonne, et le Gasoil de PCI égal à 42,5 GJ par tonne. Nous supposons qu'à terme le Fuel lourd qui sera brûlé dans les centrales sera du fuel à basse teneur en soufre (1%), par souci de protection environnementale.

Les autres combustibles utilisés ou utilisables à Madagascar (charbon, gaz naturel, biomasse) le sont de façon marginale.

On notera que pour la production d'électricité les principaux combustibles resteront importés, les ressources locales faisant l'objet de réserves prouvées étant encore marginales.

7.2.2 Le prix international des combustibles utilisables

(i) Le marché international du pétrole brut

Une part importante du coût du kWh thermique est due au combustible, dont les prévisions de prix se révèlent particulièrement délicates.

Le prix du pétrole brut (nous considérons ici le Brent, pétrole dont le pouvoir calorifique inférieur est égal à 42 GJ par tonne – on compte 7,3 barils par tonne) a en effet subi tout au long de son histoire de très importantes variations. Si l'on s'en tient à une période récente, les fluctuations ont été notables, avec plus de 130 USD/bl en 2007 et près de 40 USD/bl moins d'un an plus tard, suivi d'une croissance soutenue amenant le prix à osciller depuis 2 ans dans une bande de prix globalement comprise entre 100 et 120 USD.

Le prix du pétrole brut de l'ordre de 100 à 120 USD/bl constitue un prix d'équilibre permettant une rentabilité minimale mais satisfaisante pour l'ensemble des acteurs. Cet avis est partagé par les pays producteurs, les grandes compagnies pétrolières, les marchés à terme et les instituts internationalement reconnus pour leur spécialité dans le secteur de l'énergie (Agence Internationale de l'Energie, US Department Of Energy...).



Figure 7-1 : Historique du prix du pétrole brut (Source : INSEE France)

On adopte dans notre étude un prix constant de 80 USD/bl, situé dans la fourchette basse, et qui se veut donc conservateur pour les résultats de notre étude.

(ii) Le marché international des combustibles pétroliers

Les prix des produits pétroliers sont bien corrélés en tendance aux prix du pétrole brut malgré une forte volatilité due à des situations conjoncturelles du marché.

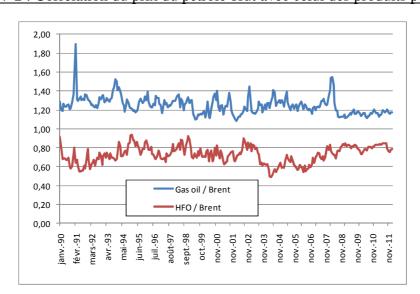


Figure 7-2 : Corrélation du prix du pétrole brut avec celui des produits pétroliers

MdE-ORE-ADER-JIRAMA Page 38 sur 134

L'analyse des données de l'INSEE permet de noter que :

- Le Fuel lourd BTS de pouvoir calorifique inférieur (PCI) égal à 40,8 GJ par tonne, s'est historiquement apprécié sur les marchés internationaux à 80% en moyenne du prix du pétrole brut.
- Le Gasoil, de PCI égal à 42,5 GJ par tonne, s'est historiquement apprécié sur les marchés internationaux à 120% en moyenne du prix du pétrole brut.

Dans le cadre de notre étude, les ratios historiques de 1,2 et 0,8 sont conservés pour estimer respectivement les prix du Gasoil et du Fuel lourd.

7.2.3 Le prix rendu centrale des combustibles utilisables

Dans le cadre de notre étude, on considère que les prix des combustibles pétroliers sont alignés sur les prix internationaux et qu'il n'y a pas de subventions ou de surcoûts éventuels.

Par ailleurs, l'évaluation économique consiste à vérifier, avec des hypothèses normatives, que le projet s'inscrit bien dans le contexte d'équilibre offre/demande de Madagascar et qu'en particulier, il conduit à un coût du kWh compétitif pour les différents clients auxquels sera vendue l'électricité. Ainsi, nous ne tenons pas compte dans notre approche des taxes frappant les produits pétroliers compte tenu des biais qu'elles induisent.

Le prix du combustible retenu dans le cadre de notre étude sera donc la somme de deux termes : le prix international tel que défini précédemment et les frais de transport, d'assurance et de manutention jusqu'à la centrale.

Le coût total, cumulant les frais de transport, d'assurance, de manutention et tout autre frais induit pour amener le combustible jusqu'à la centrale, est estimé à partir des éléments de décomposition de prix qui ont pu être établis. Il est en 2012 de l'ordre de 290 USD/t pour le Gasoil et de 220 USD/t pour le Fuel lourd. Ces coûts sont supposés constants et sans dérive par rapport à l'inflation sur la période de l'étude.

Sur les bases précédemment établies, on considère dans l'étude des coûts rendus centrales de **992 USD/t pour le Gasoil et de 686 USD/t pour le Fuel lourd** (ces coûts sont supposés constants et sans dérive par rapport à l'inflation sur la période de l'étude).

7.3 Modélisation des parcs de production en exploitation

Ce sous chapitre a pour vocation de préciser les caractéristiques technico-économiques des centrales existantes afin de bien représenter leurs performances dans les modèles d'équilibre offre-demande utilisés. L'attention particulière à apporter au paramétrage des modèles utilisés est fondamentale :

- Une <u>performance surévaluée</u> des centrales existantes a pour effet de retarder l'anticipation des besoins en nouvelles capacités de production et mène le système électrique à une situation de défaillance inévitable;
- De même, une <u>performance sous-évaluée</u>, amènera à trop anticiper la mise en service des nouvelles capacités, ce qui aura pour effet d'engendrer d'importants surcoûts mettant en difficulté financière les entreprises du secteur de l'électricité.

La modélisation des centrales existantes est construite à partir des données historiques disponibles :

- Pour les centrales hydroélectriques, il s'agit principalement des apports hydrologiques, de leur production et de leur disponibilité afin d'avoir une bonne représentation de la puissance maximale disponible de ces centrales, de leurs capacités de modulation (réservoir, temps de transfert vers les usines), de leurs coefficients énergétiques, des aléas climatiques (hydrologie notamment) et de disponibilité, des coûts d'exploitation;
- Pour les centrales thermiques, il s'agit principalement des consommations de combustible, de leur production et de leur disponibilité afin d'avoir une bonne représentation de la puissance maximale disponible de ces centrales, de leur consommation spécifique, de l'aléa de disponibilité, des coûts d'exploitation.

MdE-ORE-ADER-JIRAMA Page 40 sur 134

Concernant les centrales hydroélectriques, l'analyse des historiques de production permet de définir trois principales Conditions Hydrologiques (maximisation de la variance interclasse et minimisation de la variance intra-classe) pour les zones étudiées :

- La Condition Hydrologique 1 (CH1), dont l'occurrence est de 22%, correspond à une forte hydraulicité avec une production moyenne supérieure de 12% au productible ;
- La Condition Hydrologique 2 (CH2), dont l'occurrence est de 59%, correspond à une hydraulicité moyenne avec une production de 1% inférieure au productible ;
- La Condition Hydrologique 3 (CH3), dont l'occurrence est de 19%, correspond à une hydraulicité faible avec une production inférieure de 11% au productible moyen.

La méthodologie retenue pour modéliser les aménagements hydroélectriques est présentée en annexe 12.4.

7.3.1 Parc de production hydroélectrique

Le parc hydroélectrique existant représente une puissance installée totale de près de 154 MW. Toutes les centrales existantes sont supposées avoir une date de déclassement située au-delà de la période étudiée, c'est-à-dire après 2030.

Ce parc hydroélectrique est en majeure partie situé sur le RI Antananarivo : seule la centrale de Volobe (6,7 MW) alimente le RI Toamasina. Les autres exploitations considérées dans le cadre de l'étude sont exclusivement alimentées en moyens de production thermique.

Sur le RI Antananarivo, la puissance cumulée des 7 centrales hydroélectriques existantes est de 146 MW. Cinq de ces centrales sont réparties sur 4 vallées distinctes et exploitées par la JIRAMA. Les deux autres centrales, Sahanivotry et Tsiazompaniry, sont exploitées par des IPP.

Les apports naturels au niveau de chacun des ouvrages (hors production indépendante) sont fournis en annexe 12.5.

Les autres principales caractéristiques des centrales hydroélectriques sont précisées ci-après.

a) Vallée de l'Ikopa (RI Antananarivo)

La vallée de l'Ikopa est équipée d'un réservoir de tête, Tsiazompaniry, dont la capacité utile est de 180 hm³ et de deux centrales en cascade, Antelomita 1 et 2, équipées de réservoirs de modulation dont les capacités utiles respectives sont de 1,35 hm³ et de 0,225 hm³. Les principales caractéristiques techniques de ces centrales sont les suivantes :

Figure 7-3 : Caractéristiques principales d'Antelomita 1 et d'Antelomita 2

	Antelomita 1	Antelomita 2
Nombre de groupes	3	3
Débit maximum turbinable (m3/s)	30	30
Puissance nette maximale (MW)	4,1	4,1
Production moyenne annuelle (GWh)	21,3	20,1
Taux d'indisponibilité fortuite	3%	3%
Arrêts pour entretiens (sem/gr/an)	2	2

La contrainte associée à l'exploitation de cette vallée est le volume réservé de 85 hm³ par an, au niveau de la restitution de l'usine d'Antelomita 2, pour les besoins en eau de l'agriculture pendant les mois d'août à octobre. Les apports intermédiaires entre les deux centrales d'Antelomita sont négligeables.

b) Vallée de la Mandraka (RI Antananarivo)

Cette vallée est équipée d'un réservoir de tête, Mantasoa, ayant une capacité utile de 87 hm³, et de la centrale de Mandraka. Cette dernière est équipée d'un réservoir de modulation dont la capacité utile est de 0,2 hm³. Les principales caractéristiques techniques de cette centrale sont les suivantes :

Figure 7-4 : Caractéristiques principales de Mandraka

	Mandraka
Nombre de groupes	4
Débit maximum turbinable (m3/s)	12
Puissance nette maximale (MW)	24
Production moyenne annuelle (GWh)	59,8
Taux d'indisponibilité fortuite	3%
Arrêts pour entretiens (sem/gr/an)	2

La contrainte associée à l'exploitation de cette vallée et prise en compte dans le cadre de l'étude est un volume réservé de 6 hm³ par an, au niveau de la restitution de l'usine de Mandraka, pour les besoins en eau de l'agriculture pendant le mois d'octobre.

c) Vallée de la Vohitra (RI Antananarivo)

Cette vallée est équipée d'une seule centrale, celle d'Andekaleka, pure usine au fil de l'eau, dont les principales caractéristiques techniques sont les suivantes :

Figure 7-5: Caractéristiques principales d'Andekaleka

	Andekaleka
Nombre de groupes	3
Débit maximum turbinable (m3/s)	45
Puissance nette maximale (MW)	91
Production moyenne annuelle (GWh)	537,6
Taux d'indisponibilité fortuite	3%
Arrêts pour entretiens (sem/gr/an)	2

Aucune contrainte n'est associée à l'exploitation de cette vallée.

d) Vallée de la Manandona (RI Antananarivo)

Cette vallée est équipée d'une seule centrale, celle de Manandona, pure usine au fil de l'eau, dont les principales caractéristiques techniques sont les suivantes :

Figure 7-6: Caractéristiques principales de Manandona

	Manandona
Nombre de groupes	3
Débit maximum turbinable (m3/s)	2,1
Puissance nette maximale (MW)	1,6
Production moyenne annuelle (GWh)	4,8
Taux d'indisponibilité fortuite	3%
Arrêts pour entretiens (sem./gr/an)	2

Aucune contrainte n'est associée à l'exploitation de cette vallée.

e) <u>Vallée de l'Ivondro (RI Toamasina)</u>

Cette vallée est équipée d'une seule centrale, celle de Volobe, pure usine au fil de l'eau, située sur la rivière Ivondro et dont les principales caractéristiques techniques sont les suivantes :

Figure 7-7 : Caractéristiques principales de Volobe

	Volobe
Nombre de groupes	4
Débit maximum turbinable (m3/s)	26
Puissance nette maximale (MW)	6,8
Production moyenne annuelle (GWh)	41,9
Taux d'indisponibilité fortuite	3%
Arrêts pour entretiens (sem./gr/an)	2

Aucune contrainte n'est associée à l'exploitation de cette vallée. Les apports naturels à Volobe sont supposés parfaitement corrélés à ceux du projet de Volobe Amont.

f) Producteurs indépendants d'électricité hydroélectrique (RI Antananarivo)

Pour ces IPP hydroélectriques existants, le coût total de la fourniture n'est pas pris en compte dans le cadre de la présente étude. Seuls sont pris en compte les éléments contractuels qui impactent l'optimisation du coût global de l'équilibre offre-demande des systèmes électriques étudiés. Ce sont principalement la puissance nette disponible et l'énergie fournie à l'acheteur principal, la JIRAMA.

On suppose, dans le cadre de l'étude, que ces moyens de production sont maintenus en exploitation avec les mêmes caractéristiques au-delà de la date échéance des contrats en vigueur actuellement. Les principales caractéristiques de ces centrales sont les suivantes :

Figure 7-8 : Caractéristiques principales des IPP hydroélectriques

	Sahanivotry	Tsiazompaniry
Propriétaire	HYDELEC	HFF
Puissance nette maximale (MW)	15	5,2
Production moyenne annuelle (GWh)	80	21
Taux d'indisponibilité fortuite	3%	3%
Arrêts pour entretiens (sem/gr/an)	2	2

MdE-ORE-ADER-JIRAMA Page 44 sur 134

7.3.2 Parc de production thermique

Le parc de production thermique en exploitation est constitué de centrales exploitées par la

JIRAMA (possessions propres, locations) et des producteurs indépendants d'électricité

(Independant Power Producer: IPP).

Les caractéristiques retenues ne concernent que les coûts qui entreront effectivement dans le

cadre de l'élaboration des Plans d'Expansion au Moindre Coût (PEMC) des différents parcs

de production. A ce titre ne sont donc pas pris en compte les investissements déjà réalisés et

les frais déjà engagés tels que les charges fixes des centrales en exploitation (ce sont des coûts

dits « échoués »).

De même, concernant les IPP en cours, vis-à-vis desquels existe un engagement de la

JIRAMA, qui joue le rôle d'acheteur unique en vue de la distribution de l'électricité produite

aux clients, le coût total de la fourniture n'est pas pris en compte dans le cadre de la présente

étude. Pour chacun de ces IPP, seuls sont pris en compte ici les éléments contractuels qui

impactent le coût de revient de l'équilibre offre-demande des systèmes électriques étudiés. Ce

sont principalement les éléments suivants :

- Date d'échéance du contrat ;

- Puissance nette disponible et énergie fournie à l'acheteur principal ;

Coûts variables.

Figure 7-9 : Caractéristiques principales des centrales thermiques existantes

Nom de l'exploitation JIRAMA Nom de la centrale	Puissance Installée (MW)	Puissance Disponible (MW)	Production 2012 (GWh)	Facteur de charge 2012	Combustible utilisé	Transport local (\$/t)	Année de mise en service	Année de déclassement envisagée	Consommat° spécifique (gr/kWh)	Coût variable hors comb. (\$/MWh)	Taux d'indispo. Fortuite	Fréquence maintenance (jours/an)
RI Antananarivo Mandroseza 40MW (JIRAMA) Ambohimanambola II 25MW (JIRAMA) CT Antsirabe (JIRAMA) HFF IPP (IPP) EDM (Jocation) HYDELEC (Jocation) Aggrekko Ambo/Ja (Jocation)	40,0 25,0 11,2 20,0 5,0 8,0	36,0 17,3 6,1 20,0 3,4 6,5	181,5 40,7 7,5 4,5 4,6 0,4	58% 27% 14% 3% 16% 16%	F0 F0/G0 G0 G0 G0 G0	27 27 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2008 2009 1964-1982 2004 2011 2012	2030 2031 2004 2014 2014 2014-2018	219 220 257 230 240 240 240	8 8 16 16 16	% % % % % % ∞ ∞ ∞ ∞ ∞ ∞ ∞	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
RI Toamasina Tamatave IV (JIRAMA) ENELEC (Iocation)	18,0 20,3	4,6 20,3	12,7 51,4	32% 29%	F0/G0 F0	8 8	2009	2014 2016	238 230	8 16	%8	30
Ambositra Ambositra 04129, 04133, 05109 (JIRAMA) Ambositra 2209 (JIRAMA) Ambositra 2321 (JIRAMA)	0,8 0,4 0,5	0,7 0,3 0,4	4	32%	09 09 09	11	1996 2003 2008	2014 2018 2023	247 247 240	∞ ∞ ∞	%8 88	30 30 30
Antsiranana Antsiranana (JIRAMA) ENELEC 2 (PRIVE) Aggrekko (location)	5,6 7,5 12,0	2,0 6,0 10,0	6,3 28,9 9,3	36% 55% 11%	60 F0 60	e e e	1971 2007 2012	2014 2015 2014	300 230 230	8 8 16	%8 88 88	30 30 30
Ambilobe Ambilobe 2309, 2310 (JIRAMA) Ambilobe 04127 (JIRAMA)	1,0	8'0	4,8	41%	09 09	14	2007	2022 2030	240	∞ ∞	88	30
Morondava Morondava 2203 (JIRAMA) Morondava 4999 (JIRAMA) Morondava 4102 (JIRAMA) Morondava 2226, 2261, 2262, 2263 (JIRAM Morondava 4126 (JIRAMA) HFF (location)	0,4 0,6 0,3 1,3 0,6	0,2 0,4 0,2 1,0 0,2 0,3	7,4	42%	09 09 09	99999	1998 2000 2002 2008 2009 2012	2014 2015 2017 2023 2030 2014	260 260 260 260 260 260 230	∞ ∞ ∞ ∞ ∞	% % % % & 8 8 8 8 8 8 8	30 0 30 0 30 0 0 0 0 0 0 0 0 0 0 0 0 0

7.4 Analyse des comptes opérationnels des 6 exploitations JIRAMA

L'analyse des comptes opérationnels des 6 exploitations JIRAMA est effectuée sur la période 2010-2012 (voir résultats détaillés en annexe 12.6). Cette analyse a pour principale vocation de conforter le calage des modèles d'équilibre offre-demande utilisés dans le cadre de la présente étude (vecteur d'état à l'origine de la fonction de coût de la production). Elle ne remplace pas une étude financière du secteur de l'électricité à Madagascar.

L'analyse sommaire des comptes opérationnels des 6 exploitations de la JIRAMA met en évidence une importante dégradation de la marge opérationnelle qui devient structurellement négative au cours de cette période : elle passe d'un solde positif de +34 milliards de MGA en 2010 à un solde négatif de – 42 milliards de MGA en 2012, l'augmentation des produits opérationnels (+17%) étant plus que compensée par celles des charges (+61%).

Figure 7-10 : Augmentation 2010-2012 de certains postes clés des comptes opérationnels

	RIA	RIT	Ambositra	Antsitanana	Ambilobe	Morondava	Total
Produits opérationnels	+15%	+22%	+8%	+30%	+35%	+19%	+17%
Charges opérationnelles	+75%	+42%	+40%	+29%	+76%	+59%	+61%
Coûts prod. thermique	+99%	+46%	+42%	+30%	+82%	+61%	+74%
Conso. combustibles (I)	+49%	+25%	+4%	+9%	+26%	+13%	+36%
Prod. thermique (kWh)	+46%	+27%	+2%	+2%	+24%	+16%	+34%

Cette évolution est en grande partie due à l'augmentation du poids de la production thermique dans la structure des coûts, augmentation principalement due à deux raisons principales :

- L'augmentation du prix des combustibles fossiles (environ +40% entre 2010 et 2012);
- L'augmentation de la production thermique elle-même portée par l'augmentation de la consommation, notamment sur le RI Antananarivo qui représente, sur le périmètre étudié, 80% des produits pour 85% de la production (le différentiel est essentiellement dû à une grille tarifaire spécifique).

Sur la période 2010-2012, l'évolution de la consommation de combustible est cependant bien corrélée à celle de la production thermique ce qui traduit la non dégradation, d'un point de vue global, de la performance de ces installations. Les consommations spécifiques notées

PROJET DE REDRESSEMENT ET DE RESTRUCTURATION DU SECTEUR DE L'ELECTRICITE

Plans de Développement des Systèmes Electriques de 3 réseaux d'exploitation de la JIRAMA et de 3 régions pour l'Electrification Rurale Rapport Définitif – Juin 2013

sur cette période pour les centrales existantes seront donc maintenues constantes sur

leurs durées de vie résiduelles.

Par ailleurs, on constate une importante baisse, sur la période 2010-2012 du rendement global

des réseaux (rapport entre ventes et production brute) qui passe, sur l'ensemble du périmètre,

de 71% à 68%. Ce point rappelle l'importance de résorber les Pertes Non Techniques (PNT)

et de viser une amélioration continue du rendement technique du réseau, donc de la

productivité.

Néanmoins, il ressort que la situation financière actuelle de ces 6 exploitations JIRAMA n'est

pas soutenable dans la durée. Il semble donc judicieux d'effectuer une étude financière

détaillée du périmètre étudié voire de l'ensemble du secteur de l'électricité (compte tenu du

poids du RI Antananarivo), afin de vérifier les états financiers de cette activité clé pour le

développement du pays et garantir leur équilibre dans la durée.

Rappelons enfin que les PEMC construits dans le cadre de la présente étude sont indicatifs et

ont pour principale vocation de garantir la satisfaction de la demande en électricité au

moindre coût. Ils n'ont pas vocation à garantir l'équilibre financier des différentes

exploitations. Ces équilibres financiers devront donc faire l'objet d'études spécifiques : études

financière et tarifaire.

MdE-ORE-ADER-JIRAMA

7.5 Equipements de production hydroélectrique candidats

Les caractéristiques technico-économiques des aménagements hydroélectriques candidats sont issues d'études réalisées par plusieurs bureaux d'études sur des périodes différentes.

Dans la présente étude, les **estimations des coûts de construction sont mises à jour aux conditions économiques 2012 à partir du taux d'inflation mondial** (Source FMI). On considère pour chacun des aménagements hydroélectriques candidats :

- Des frais de maîtrise d'œuvre (MOE) et de maîtrise d'ouvrage (MOA) représentant 15% des coûts de construction ;
- Un échéancier des dépenses (construction + MOE + MOA) linéaire pendant la durée de construction et des intérêts intercalaires (IDC) estimés sur la base du taux d'actualisation retenu pour cette étude;
- Une durée de vie économique de 30 ans (afin d'être conservatif quant aux résultats) ;
- Des charges d'exploitation et de maintenance (*O&M costs*) estimées annuellement à 2% des coûts de construction ;
- Des arrêts pour entretien effectués en temps masqué pendant l'étiage des cours d'eau ;
- Un taux d'indisponibilité fortuite de 3%.

Les dates de mise en service indiquées sont des dates au plus tôt ; elles sont obtenues sur la base de l'estimation de la durée de construction des ouvrages et en tenant compte du temps nécessaire pour effectuer les études d'avant projet complémentaires, le bouclage financier des projets et le lancement des appels d'offre.

Sur la base de l'ensemble de ces éléments, les coûts économiques complets des candidats hydroélectriques sont estimés varier dans une plage allant de 50 à 120 \$/MWh (soit environ 110 à 270 MGA/kWh).

MdE-ORE-ADER-JIRAMA Page 49 sur 134

Figure 7-11 : Caractéristiques principales des candidats hydrauliques

Eploitation	Coût complet	(\$/WWh)	<i>L</i> 9	82	22	49	96	121	61	102	68	69	25	08	48
Eploi	0&M (5)	(k\$US)	10250	11300	8450	5100	4050	4070	770	1550	002	940	470	250	110
	Agglomérat° à desservir		RIA - RIT - Ambositra	RIA	RIT - RIA - Ambositra	RIA	RIA	RIA	Antsiranana - Ambilobe	RIA	RIA	Ambositra			
MSI	Année au	plus tot	2020	2020	2022	2019	2020	2020	2018	2020	2017	2018	2017	2017	2017
	Annuité	(k\$US)	099 52	028 88	92 360	36 930	28 490	28 620	5 430	10 650	4 700	9 590	3 180	1 680	052
ion	Invest.	(k\$US)	713 190	785 890	587 840	348 150	268 590	269 750	51 210	100 410	44 280	62 160	30 000	15 800	7 020
Construction	MOE & MOA (4)	(k\$US)	76 880	84 720	63 370	38 280	30 370	30 500	5 790	11 630	5 250	7 030	3 560	1870	830
	Coût (3)	(k\$US)	512 540	564 780	422 450	255 220	202 440	203 320	38 600	77 510	35 000	46 850	23 710	12 490	5 5 5 0
	Durée	(mois)	48	48	48	43	36	36	36	30	24	36	24	24	24
	Vol. utile réservoir	(Mm3)	-	1200	-	45	100		100			-		-	-
Production	Puissance Productible Vol. utile à installer annuel réservoir	(GWh)	1290	1154	915	852	340	270	102	120	140	110	70	24	18
	Puissance à installer	(MM)	180	150	120	105	70	56	34	22	21	15	12	3,5	2,2
Hydrologie	Module	(m²/s)	165	182	314	113	135	103	50	06	39	14	240	14	6
Hyo	Bassin	(km ²)	7 100	008 6	11 500	4 700	7 270	2 560	1873	3 250	1 550	970	4 430	ND	ND
Localisation	Région		VAKINANKARATRA	ANALAMANGA	ALAOTRA MANGORO	ALAOTRA MANGORO	ANALAMANGA	ATSINANANA	ALAOTRA MANGORO	VAKINANKARATRA	VAKINANKARATRA	DIANA	ANALAMANGA	ITASY	AMORON'I MANIA
Tyne	aménagmt (2)	ĵ.	AFL	AVR	AFL	AVR	AFL	AFL	AVR	AFL	AFL	AFL	AFL	AFL	AFL
	Nom de l'aménagement		Antetezambato	Mahavola	Lohavanana	Sahofika	Ranomafana	Volobe Amont	Andekaleka G4 + Barrage Fempona (1)	Tsinjoarivo	Talaviana	0 Andranomamofona	L Mahitsy	2 Lily	3 Tazonana
	77							1 10		~	•	. 0 1	7	- 2	

(1) : Ce projet consiste à rajouter un 4ème groupe à la centrale existante d'Andekaleka et à aménager un barrage régulateur (Fempona) en amont de l'aménagement actuel. Les coordonnées GPS correspondent à l'emplacement du barrage de Fempona, et les données hydrologiques à celles du bassin de la Vohitra qui alimente la centrale d'Andekaleka.

^{(2) :} AFL = Au fil de l'eau ; AVR : Avecréservoir (3) : Hors intérêt intercalaire, hors coût ligne d'interconnexion

^{(4) :} Frais de MOE & MOA = 15% du Coût de construction (5) : Charges annuelles d'O&M = 2% du coût de construction

Au-delà des conditions économiques différentes adoptées dans les études disponibles, l'analyse comparée des caractéristiques des projets hydroélectriques candidats amène un certain nombre de remarques :

- La forte hétérogénéité des débits spécifiques correspondant aux débits moyens annuels et aux débits de crue. Ce point questionne la cohérence entre l'ensemble des études disponibles notamment sur l'estimation du productible des centrales et le dimensionnement des ouvrages de sûreté (évacuateurs de crue par exemple) ;
- La forte hétérogénéité des rendements hydrauliques des installations, qui questionne la cohérence entre l'ensemble des études disponibles, notamment sur l'estimation de la bonne utilisation du potentiel hydraulique, l'estimation du productible des centrales, le dimensionnement des adductions, le choix des matériels électromécaniques.

Il semble donc judicieux de (faire) réaliser une analyse comparative des différents projets afin de mieux garantir, pour les prochaines études de planification, la cohérence des estimations des caractéristiques des candidats hydroélectriques.

7.6 Equipments de production thermique candidats

7.6.1 Caractéristiques technico-économiques des candidats thermiques

La taille des moyens de production candidats se révèle être d'une grande importance pour le système électrique. En effet, l'installation de moyens de production de taille unitaire trop petite provoque des surcoûts (effet d'échelle sur l'investissement initial). De même, l'installation de moyens de production de taille unitaire trop élevée dans des systèmes électriques de petite taille est généralement cause de dysfonctionnements importants : la perte instantanée d'un groupe de forte taille est souvent cause de déséquilibre pouvant conduire à des délestages d'une partie de la clientèle. La gestion d'ensemble du système électrique s'en trouve perturbée et oblige à constituer une importante réserve tournante (opération coûteuse). Par ailleurs, une indisponibilité de longue durée d'une unité de production de taille importante nécessite un fonctionnement prolongé de moyens de pointe (coût de combustible plus élevé, augmentation des coûts d'entretien). Ces arguments militent pour l'installation de nouveaux moyens de production de taille raisonnable. Pour mémoire, les puissances de pointe sur les différentes exploitations varient, tout au long de la période étudiée :

- De 1 à 3 MW sur les exploitations d'Ambilobe, d'Ambositra et de Morondava ;
- De 10 à 40 MW sur les exploitations d'Antsiranana et le RI Toamasina ;
- Et de 200 à près 400 MW sur le RI Antananarivo.

On retient l'installation de nouveaux moyens de production de tailles unitaires maximales limitées à 20 MW pour le RI Antananarivo, à 5 MW pour les exploitations moyennes (Antsiranana, RI Toamasina) et à 500 kW pour les petites exploitations (Ambilobe, Ambositra, Morondava).

Ces tailles correspondent à des gammes courantes de moteurs diesels (voire de turbines à combustion pour le RI Antananarivo) unités de production compatibles avec les combustibles sélectionnés dans le cadre de la présente étude (Gasoil et Fuel lourd).

Le tableau ci-après présente les principales caractéristiques technico-économiques retenues pour ces candidats thermiques.

Figure 7-12 : Caractéristiques principales des candidats thermiques

Nature Spécifiq. Fix Spécifiq. Fix Fix Spécific. Fix		Coûts d'in	Coûts d'investissement (hors IDC)	ent	hors IDC		Combu		Coû	Coûts d'exploitation	ation		Indisponibilité	nibilité
en S/kW en S/kW % en S/kW % en S/kW % en S/kW Ken S/kW	UISSANCE	1970	Give	-	1000	+	104	Conso.			Variable	Durée de vie		
2400 2160 90 240 10 GO 265 72 2390 2150 90 240 10 GO 265 72 2390 2150 90 240 10 GO 265 72 2390 2160 90 240 10 GO 265 77 2370 2140 90 240 10 GO 265 77 2360 2130 90 240 10 GO 266 77 2360 2100 90 240 10 GO 266 77 2370 2100 90 240 10 GO 266 77 2380 2100 90 240 10 GO 266 77 2390 220 10 GO 256 77 70 70 2300 20 20 20 20 20 70 266 71	en kW	en \$/kW	§ ≥	%	_		(*)	specifiq. (g/kWh)	Fixe \$/kW/an	Fixe %d'inv	hors comb (\$/MWh)	(années)	MTN (jours/an)	Aléatoire %
2.390 2.150 90 2.40 10 GO 265 7.2 2.390 2.150 90 2.40 10 GO 265 7.2 2.390 2.150 90 2.40 10 GO 265 7.7 2.300 2.140 90 2.40 10 GO 265 7.7 2.360 2.140 90 2.40 10 GO 265 7.7 2.360 2.120 90 2.40 10 GO 265 7.7 2.360 2.120 90 2.40 10 GO 266 7.7 2.360 2.120 90 2.40 10 GO 266 7.7 2.370 2.100 90 2.40 10 GO 266 7.7 2.320 2.000 90 2.40 10 GO 266 7.7 2.230 2.000 90 2.40 10 GO 266 </td <td>0.1</td> <td>007</td> <td></td> <td>9</td> <td></td> <td>0</td> <td>C</td> <td>Ü</td> <td>43</td> <td>\d0 c</td> <td>7.0</td> <td>Ċ</td> <td>Oc</td> <td>/00</td>	0.1	007		9		0	C	Ü	43	\d0 c	7.0	Ċ	Oc	/00
2339 2150 90 240 10 GO 265 72 2380 2140 90 240 10 GO 265 77 2380 2140 90 240 10 GO 265 77 2380 2140 90 230 10 GO 265 77 2380 2120 90 230 10 GO 256 77 2330 2100 90 240 10 GO 256 77 2330 2090 90 240 10 GO 256 77 2330 2090 90 240 10 GO 256 77 2320 2080 90 240 10 GO 256 77 2320 2080 90 240 10 GO 256 77 2320 2080 90 220 10 GO 256 77	sel GO 16 kW	2 390		06		2 0	9 9	265	72	3,0%	12	20	30	%8
2380 2150 90 240 10 GO 265 72 2380 2140 90 240 10 GO 265 71 2360 2140 90 230 10 GO 265 71 2360 2120 90 230 10 GO 266 71 2360 2120 90 240 10 GO 256 71 2340 2100 90 240 10 GO 256 71 2320 2090 90 240 10 GO 256 71 2320 2090 90 240 10 GO 256 71 2320 2090 90 240 10 GO 256 69 71 2320 2090 90 220 10 GO 256 69 71 2300 1900 90 220 10 GO 256	sel 'GO' 18 kW	2 390		06		10	9	265	72	3,0%	12	20	30	%8
2380 2140 90 240 10 GO 265 71 2370 2140 90 230 10 GO 265 71 2370 2120 90 230 10 GO 256 71 2340 2120 90 230 10 GO 256 71 2340 2120 90 240 10 GO 256 71 2330 2120 90 240 10 GO 256 71 2320 2200 90 240 10 GO 256 71 2260 2000 90 240 10 GO 256 68 2260 2000 90 220 10 GO 256 69 2260 2000 90 220 10 GO 256 67 2270 1900 90 220 10 GO 247 67	sel 'GO' 20 kW	2 390		90		10	90	265	72	3,0%	12	20	30	%8
2370 2140 90 230 10 GO 265 71 2360 2120 90 230 10 GO 256 71 2360 2120 90 230 10 GO 256 71 2370 2100 90 240 10 GO 256 70 2370 2080 90 240 10 GO 256 70 2370 2080 90 240 10 GO 256 70 2380 2080 90 240 10 GO 256 70 2280 2080 90 240 10 GO 256 66 2280 2080 90 220 10 GO 256 66 2280 2080 90 220 10 GO 256 67 2100 1900 90 220 10 GO 247 67	sel 'GO' 25 kW			90	240	10	09	265	7.1	3,0%	12	20	30	%8
2 360 2 130 90 230 10 GO 256 71 2 350 2 120 90 2 240 10 GO 256 71 2 330 2 080 90 2 40 10 GO 256 70 2 330 2 080 90 2 40 10 GO 256 70 2 2 20 2 080 90 2 40 10 GO 256 69 2 2 20 2 080 90 2 40 10 GO 256 69 2 2 20 2 080 90 2 20 10 GO 256 69 2 2 20 2 080 90 2 20 10 GO 2 26 67 2 100 1 90 2 20 10 GO 2 47 66 67 2 100 1 90 2 20 10 GO 2 47 66 67 2 100 1 90 1 20 10 GO 2 47 60	sel 'GO' 32 kW	2 370		06	230	10	9	265	7.1	3,0%	12	20	30	%8
2350 2120 90 230 10 GO 256 71 2340 2100 90 240 10 GO 256 70 2320 2080 90 240 10 GO 256 70 2250 2080 90 240 10 GO 256 69 2250 2080 90 230 10 GO 256 69 2250 2080 90 220 10 GO 256 69 2250 2010 90 220 10 GO 256 69 2250 2010 90 220 10 GO 247 67 2170 1900 90 220 10 GO 247 66 2170 1900 90 220 10 GO 247 67 1900 100 90 200 10 GO 247 67	sel 'GO' 40 kW	2 360		90	230	10	9	256	71	3,0%	12	20	30	%8
2340 2700 90 240 10 GO 256 70 2330 2090 90 240 10 GO 256 69 2300 2080 90 230 10 GO 256 69 2200 2080 90 230 10 GO 256 69 2200 2080 90 230 10 GO 256 69 2200 2000 90 220 10 GO 256 69 2100 1970 90 220 10 GO 247 66 2110 1970 90 220 10 GO 247 66 2110 1980 90 210 GO 247 66 67 240 170 60 240 170 60 240 170 60 240 170 60 240 170 60 240 60 170 60 <td>sel 'GO' 50 kW</td> <td></td> <td></td> <td>90</td> <td>230</td> <td>10</td> <td>00 0</td> <td>256</td> <td>7.</td> <td>3,0%</td> <td>12</td> <td>20</td> <td>30</td> <td>%8</td>	sel 'GO' 50 kW			90	230	10	00 0	256	7.	3,0%	12	20	30	%8
2.330 2.090 90 240 10 GO 256 69 2.290 2.080 90 240 10 GO 256 69 2.290 2.080 90 220 10 GO 256 69 2.200 2.080 90 220 10 GO 256 69 2.200 2.000 90 220 10 GO 256 69 2.200 2.000 90 220 10 GO 247 66 2.170 1.950 90 220 10 GO 247 66 2.170 1.950 90 220 10 GO 247 66 2.170 1.950 90 220 10 GO 247 66 2.170 1.980 90 220 10 GO 247 66 2.170 1.830 90 200 10 GO 247 67 <td>sel 'GO' 63 kW</td> <td></td> <td></td> <td>06</td> <td></td> <td>0 ;</td> <td>9 (</td> <td>256</td> <td>2 6</td> <td>3,0%</td> <td>12</td> <td>20</td> <td>9 8</td> <td>%8</td>	sel 'GO' 63 kW			06		0 ;	9 (256	2 6	3,0%	12	20	9 8	%8
2.290 2.00 90 2.00 10 60 256 68 2.290 2.00 90 2.20 10 60 256 68 2.200 2.00 90 2.20 10 60 256 68 2.200 2.00 90 2.20 10 60 247 67 2.100 1970 90 2.20 10 60 247 66 2.100 1970 90 2.00 10 60 247 66 2.100 1980 10 20 220 10 60 247 66 2.100 1980 10 20 247 66 67 67 2.100 1980 10 10 60 247 66 67 1.800 1700 90 20 10 60 247 66 67 1.800 1700 10 10 60 247	sel GO 70 kW	2 330		000		2 5		256	0,0	3,0%	10	20	30	% % %
2 2 2 6 0 2 0 30 90 230 10 GO 256 68 2 2 2 0 0 0 90 2 2 0 10 90 2 2 0 10 60 2 4 7 67 2 2 2 0 0 0 90 2 2 0 10 60 2 4 7 67 2 1 7 0 1 9 0 0 90 2 2 0 10 60 2 4 7 67 2 1 7 0 1 9 0 0 90 2 2 0 10 60 2 4 7 66 2 1 1 0 1 9 0 0 2 0 1 0 60 2 4 7 66 2 1 1 0 1 9 0 0 2 0 1 0 60 2 4 7 66 1 9 0 0 1 1 0 60 2 4 7 66 66 1 8 0 0 1 1 0 60 2 4 7 66 67 1 8 0 0 1 1 0 60 2 4 7 66 66 1 8 0 0 1 1 0 60 2 4 7 66 67 1 8 0 0 1 1 0 1 0 60 2 4 7 67 6	sel 'GO' 100 kW	2 2 9 0		06		9 0	000	256	69	3,0%	12	20	30	%8
2230 2010 90 220 10 GO 256 67 2130 2000 90 220 10 GO 247 67 2130 1970 90 220 10 GO 247 67 2170 1950 90 220 10 GO 247 66 2170 1950 90 220 10 GO 247 67 1990 1770 90 200 10 GO 247 67 1990 1770 90 200 10 GO 247 67 1990 1770 90 180 10 GO 247 67 1800 10 10 GO 247 67 67 1800 10 10 GO 247 67 67 1800 10 10 GO 247 67 67 1800 10 10	sel 'GO' 125 kW	2 260		90		10	9	256	89	3,0%	12	20	30	%8
2220 2000 90 220 10 GO 247 67 2190 1970 90 220 10 GO 247 66 2170 1950 90 220 10 GO 247 66 2170 1900 1730 90 200 10 GO 247 66 1900 1770 90 200 10 GO 247 61 1800 1770 90 200 10 GO 247 61 1800 1770 90 200 10 GO 247 61 1800 1770 90 180 10 GO 247 61 1800 1700 90 180 10 GO 247 61 1800 1800 90 180 10 GO 240 61 1800 1080 10 10 GO 240 61	sel 'GO' 150 kW	2 2 3 0		90		10	90	256	29	3,0%	11	20	30	%8
2190 1970 90 220 10 GO 247 66 2170 1950 90 220 10 GO 247 66 2170 1900 90 220 10 GO 247 66 2030 1830 90 200 10 GO 247 66 1900 1770 90 190 10 GO 247 67 1810 1630 90 180 10 GO 247 67 1800 1630 180 10 GO 247 67 1800 1630 180 10 GO 240 43 1800 180 160 10 GO 240 43 1200 1080 90 120 10 GO 240 43 1200 1080 90 120 10 GO 230 36 1190 1070 90 <td>sel 'GO' 160 kW</td> <td>2 2 2 0</td> <td></td> <td>90</td> <td></td> <td>10</td> <td>9</td> <td>247</td> <td>29</td> <td>3,0%</td> <td>11</td> <td>20</td> <td>30</td> <td>%8</td>	sel 'GO' 160 kW	2 2 2 0		90		10	9	247	29	3,0%	11	20	30	%8
2170 1950 90 220 10 GO 247 65 2110 1900 90 210 10 GO 247 65 2030 1830 90 200 10 GO 247 65 1990 1770 90 190 10 GO 247 67 1810 1620 190 190 10 GO 247 67 1810 1620 190 190 190 10 GO 240 57 1800 10 10 GO 240 54 57 1200 1080 90 180 10 GO 240 54 1200 1080 90 120 10 GO 230 36 1200 1080 90 120 10 GO 230 36 1100 100 10 120 10 GO 230 36	sel 'GO' 180 kW	2 190		06		10	00	247	99	3,0%	11	20	30	%8
2110 1900 90 210 10 GO 247 63 2030 1830 90 200 10 GO 247 61 1990 1770 90 200 10 GO 247 61 1800 1770 90 180 10 GO 247 61 1810 1630 90 180 10 GO 240 57 1800 1600 180 190 180 10 GO 240 54 1800 10 180 190 120 10 GO 240 43 1200 1080 90 120 10 GO 230 36 1200 1080 90 120 10 GO 230 36 1180 1060 90 120 10 GO 230 36 1180 1060 90 120 10 GO 230 <td>sel 'GO' 200 kW</td> <td>2 1 7 0</td> <td></td> <td>06</td> <td></td> <td>10</td> <td>00 0</td> <td>247</td> <td>65</td> <td>3,0%</td> <td>11</td> <td>20</td> <td>30</td> <td>%8</td>	sel 'GO' 200 kW	2 1 7 0		06		10	00 0	247	65	3,0%	11	20	30	%8
2 030 1830 90 200 10 GO 247 60 1 990 1730 90 200 10 GO 247 61 1 810 1630 90 180 10 GO 247 60 1 810 1630 90 180 10 GO 240 54 1 800 1520 10 GO 240 54 1 200 1080 90 120 10 GO 230 36 1 200 1080 90 120 10 GO 230 36 1 200 1080 90 120 10 GO 230 36 1 200 1080 90 120 10 GO 230 36 1 130 1070 90 120 10 GO 230 36 1 140 1070 90 120 10 GO 220 35 1 140 1060 90 120 10 GO 220 36 1 140	sel 'GO' 250 kW	2 1 1 0		06		0 9	9 6	247	63	3,0%	11	20	30	%8
1990 1730 90 200 10 GO 247 57 1810 1630 90 180 10 GO 240 54 1810 1630 90 180 10 GO 240 54 1800 1300 90 140 10 GO 240 51 1200 1080 90 120 10 GO 230 36 1190 1070 90 120 10 GO 230 36 1180 1060 90 120 10 GO 220 35 1180 1060 90 120 10 GO 220 36 1140 1060 90 120 10 FO 220 36 <t< td=""><td>sel 'GO' 315 kW</td><td>2 030</td><td></td><td>06</td><td></td><td>0 (</td><td>9 6</td><td>247</td><td>67</td><td>3,0%</td><td></td><td>50</td><td>30</td><td>%%</td></t<>	sel 'GO' 315 kW	2 030		06		0 (9 6	247	67	3,0%		50	30	%%
1810 1710 90 180 10 GO 247 97 1810 1630 90 180 10 GO 240 54 1440 1300 90 140 10 GO 240 54 1200 1080 90 120 10 GO 230 36 1190 1070 90 120 10 GO 230 36 1180 1070 90 120 10 GO 220 35 1180 1060 90 120 10 GO 220 35 1170 1060 90 120 10 GO 220 35 1160 1070 90 120 10 FO 220 36 <t< td=""><td>sel GO 350 kW</td><td>990</td><td></td><td>000</td><td></td><td>2 5</td><td>3 6</td><td>247</td><td>00</td><td>%0,0</td><td>- 6</td><td>20</td><td>000</td><td>0,00</td></t<>	sel GO 350 kW	990		000		2 5	3 6	247	00	%0,0	- 6	20	000	0,00
1680 1520 90 160 60 240 43 1440 1300 90 140 10 60 240 43 1200 1080 90 120 10 60 230 36 1200 1080 90 120 10 60 230 36 1200 1080 90 120 10 60 230 36 1200 1080 90 120 10 60 230 36 1190 1070 90 120 10 60 230 36 1180 1060 90 120 10 60 230 36 1180 1060 90 120 10 60 220 36 1180 1060 90 120 10 60 220 36 1170 1050 90 120 10 60 220 36 1180 <td>sel GO 500 kW</td> <td>1 810</td> <td></td> <td>000</td> <td></td> <td>5 6</td> <td>9 9</td> <td>240</td> <td>54</td> <td>3,0%</td> <td>10</td> <td>20 2</td> <td>30</td> <td>%8</td>	sel GO 500 kW	1 810		000		5 6	9 9	240	54	3,0%	10	20 2	30	%8
1440 1300 90 140 10 GO 240 43 1200 1080 90 120 10 GO 230 36 1190 1070 90 120 10 GO 230 36 1180 1060 90 120 10 GO 230 36 1180 1060 90 120 10 GO 220 36 1170 1050 90 120 10 FO 220 35 1160 1040 90 120 10 FO 220 36 1160 1030 10 10 FO 220 36 1110	sel 'GO' 600 kW	1 680		06		10	9	240	51	3,0%	10	20	30	%8
1200 1080 90 120 10 GO 230 36 1190 1070 90 120 10 GO 230 36 1180 1060 90 120 10 GO 230 36 1180 1060 90 120 10 GO 230 36 1180 1060 90 120 10 GO 220 35 1170 1060 90 120 10 FO 220 35 1160 1040 90 120 10 FO 220 34 1160 1060 90 110 10 FO 220 34	sel 'GO' 800 kW	1 440		90		10	9	240	43	3,0%	6	20	30	%8
1200 1080 90 120 10 GO 230 36 1200 1080 90 120 10 GO 230 36 1200 1080 90 120 10 GO 230 36 1190 1070 90 120 10 GO 230 36 1180 1060 90 120 10 GO 230 36 1180 1060 90 120 10 GO 230 36 1180 1060 90 120 10 GO 230 36 1170 1060 90 120 10 GO 220 35 1160 1040 90 120 10 FO 220 35 1150 1020 90 120 10 FO 220 34 1160 1020 90 110 10 FO 220 34	el 'GO' 1000 kW	1 200		90		10	90	230	36	3,0%	80	20	30	%8
1200 1080 90 120 10 GO 230 36 1200 1080 90 120 10 GO 230 36 1190 1070 90 120 10 GO 230 36 1180 1060 90 120 10 GO 230 36 1180 1060 90 120 10 GO 220 35 1170 1060 90 120 10 FO 220 35 1170 1050 90 120 10 FO 220 35 1160 1040 90 120 10 FO 220 35 1150 1030 90 120 10 FO 220 34 1150 1030 90 110 10 FO 220 34 1100 90 10 10 FO 220 33 1000	sel 'GO' 1250 kW	1 200		90		10	90	230	36	3,0%	8	25	30	%8
1200 1080 90 120 10 GO 230 36 1190 1070 90 120 10 GO 230 36 1180 1060 90 120 10 GO 230 36 1180 1060 90 120 10 GO 230 36 1170 1060 90 120 10 FO 220 35 1170 1050 90 120 10 FO 220 35 1160 1040 90 120 10 FO 220 35 1150 1040 90 120 10 FO 220 35 1130 1020 90 110 10 FO 220 34 1100 90 10 10 10 FO 220 33 1000 90 10 10 10 FO 220 30	sel 'GO' 1400 kW	1 200		06		10	00	230	36	3,0%	8	25	30	%8
1190 1070 90 120 10 GO 230 36 1180 1060 90 120 10 GO 230 36 1180 1060 90 120 10 GO 230 36 1170 1050 90 120 10 FO 220 35 1170 1040 90 120 10 FO 220 35 1150 1040 90 120 10 FO 220 35 1150 1030 90 120 10 FO 220 34 1110 1000 90 110 10 FO 220 34 1050 950 90 10 10 FO 220 33 1000 900 90 10 10 FO 220 33 1000 900 90 10 10 FO 220 30 1000 900 90 10 10 FO 220 30 1000 900 90 10 10 FO 220 30 1000 900 90 10 10 60 230	sel 'GO' 1600 kW	1 200		06		10	00 0	230	36	3,0%	ω (25	30	%8
1190 1070 90 120 10 50 230 30 1180 1060 90 120 10 60 230 35 1170 1050 90 120 10 FO 220 35 1170 1040 90 120 10 FO 220 35 1150 1040 90 120 10 FO 220 35 1150 1030 90 120 10 FO 220 34 1130 1020 90 110 10 FO 220 34 1110 1000 90 110 10 FO 220 33 1000 90 10 10 FO 220 33 1000 90 10 10 FO 220 30 1000 90 10 10 FO 220 30 1000 90 10 10 GO 230 20	sel 'GO' 1800 kW	1 190		06		9	9 (230	36	3,0%	∞ α	25	9 9	%8
1180 1060 90 120 10 50 220 35 1170 1060 90 120 10 FO 220 35 1170 1050 90 120 10 FO 220 35 1160 1040 90 120 10 FO 220 35 1150 1030 90 110 10 FO 220 34 1130 1020 90 110 10 FO 220 34 1110 1000 90 110 10 FO 220 33 1000 90 10 10 FO 220 33 1000 90 10 10 FO 220 30 1000 90 90 10 10 FO 220 30 1000 540 90 10 60 230 200	el 'GO' 3000 kW	1.80		000		2 6	9 6	230	35	3,0%	οα	25 25	30	% %
1170 1050 90 120 10 FO 220 35 1170 1050 90 120 10 FO 220 35 1160 1040 90 120 10 FO 220 35 1150 1030 90 110 10 FO 220 34 1110 1000 90 110 10 FO 220 34 1105 950 90 110 10 FO 220 33 1000 900 90 100 10 FO 220 30 1000 900 90 100 10 FO 220 30 600 540 90 10 10 GO 230 18 600 540 90 10 60 60 230 200	sel 'FO' 3500 kW	1180		06		9 0	: C	220	35	3,0%	0 00	25	30	%8
1170 1050 90 120 10 FO 220 35 1160 1040 90 120 10 FO 220 35 1150 1040 90 110 10 FO 220 34 1130 1020 90 110 10 FO 220 34 1110 1000 90 110 10 FO 220 33 1000 950 90 100 10 FO 220 32 1000 900 90 100 10 FO 220 30 600 540 90 100 10 GO 300 18 600 540 90 60 10 GO 230 200	sel 'FO' 4000 kW	1170		90	120	10	6	220	35	3,0%	8	25	30	%8
1160 1040 90 120 10 FO 220 35 1150 1040 90 110 10 FO 220 34 1150 1020 90 110 10 FO 220 34 1110 1000 90 110 10 FO 220 33 1050 950 90 10 10 FO 220 32 1000 900 90 100 10 FO 220 30 600 540 90 100 10 GO 300 18 600 540 90 60 10 GO 230 200	sel 'FO' 4500 kW	1170		90	120	10	요	220	35	3,0%	8	25	30	%8
1150 1040 90 110 10 FO 220 35 1150 1030 90 120 10 FO 220 34 1130 1020 90 110 10 FO 220 34 1110 1000 90 110 10 FO 220 33 1000 950 90 100 10 FO 220 32 1000 900 90 100 10 FO 220 30 600 540 90 60 10 GO 300 18 0 600 540 90 60 10 GO 230 200	sel 'FO' 5000 kW	1 160		90	120	10	ဂ္	220	35	3,0%	8	25	30	%8
1150 1030 90 120 10 FO 220 34 1130 1020 90 110 10 FO 220 34 1110 1000 90 110 10 FO 220 33 1000 950 90 100 10 FO 220 32 1000 900 90 100 10 FO 220 30 600 540 90 60 10 GO 300 18 0 GO 530 230 200	sel 'FO' 5500 kW	1 150		90	110	10	요	220	35	3,0%	8	25	30	%8
1130 1020 90 110 FO 220 34 1110 1000 90 110 10 FO 220 33 1050 950 90 100 10 FO 220 32 1000 900 90 100 10 FO 220 30 600 540 90 60 10 GO 300 18	sel 'FO' 6000 kW	1 150		06		10	ල	220	34	3,0%	7	25	30	%8
1110 1000 90 110 FO 220 33 1050 950 90 100 10 FO 220 32 1000 900 90 100 10 FO 220 30 600 540 90 60 10 GO 300 18	sel 'FO' 8000 kW	1 130		06		10	유 t	220	34	3,0%	7	25	30	%8
1050 950 90 100 10 FO 220 32 1000 900 90 100 10 FO 220 30 600 540 90 60 10 GO 300 18 0 GO 230 200	el 'FO' 10000 kW	1110		06	110	10	요 (220	33	3,0%	\ 1	25	30	%8 8
1 000 900 90 100 10 FO 220 30 600 540 90 60 10 GO 300 18 0 GO 230 200	el 'FO' 15000 kW	1 050		06	100	0 9	오 (220	35	3,0%	\ (25	30	%8
0 60 230 200	el 'FO' 20000 KW	1 000		06	100 09	5 5	2 Ç	300	30	3,0%	0 4	25 15	ر ا	% %
000 00 00	, GO 18000 KW	000		000	00	2 6	9 0	330	0 0	0,0%	t ,	<u>c</u>	> %	%0
	-ocation GC					>	9	730	007		0		30	%8

*): GO = Gas (FO = Fuel Oil

7.6.2 Détermination des candidats thermiques de référence

Afin de choisir les candidats thermiques de référence, on réalise un tri économique à l'aide du diagramme des durées d'équilibre présenté ci-dessous. Ce diagramme permet de représenter le coût annuel d'un équipement thermique en fonction de sa durée d'utilisation.

Pour chaque équipement thermique, le coût total annuel par kW disponible peut être représenté par une droite d'équation $Y = A + B \times U$, fonction de la durée d'utilisation « U ». « A » représente le coût d'anticipation du kW garanti du moyen de production considéré et « B » représente le coût proportionnel du kWh (y compris combustible). « A » est défini par la formule suivante :

$$A = \{ CF + [Ix FRC(a,d) / (1+a)^{0.5}] \} / Px Xdisp$$

où, « **CF** » représente les charges fixes annuelles d'exploitation, « **I** » l'investissement (coût de construction + intérêts intercalaires), « **a** » le taux d'actualisation (ici égal à 10%), « **d** » la durée de vie de l'équipement, « **P** » la puissance nette de l'installation, « **Xdisp** » son taux de disponibilité global, et « **FRC** (**a,d**) » le facteur de récupération du capital :

$$FRC(a,d) = a \times (1+a)^d / [(1+a)^d - 1]$$

Le catalogue des unités thermiques candidates et les caractéristiques des combustibles utilisés permettent d'évaluer le coût d'anticipation et le coût proportionnel de chacun des candidats.

Pour chaque durée d'utilisation, on définit le candidat thermique de référence comme étant celui dont le coût global est le plus compétitif. Comme l'illustre le graphique ciaprès, les candidats thermiques de référence sont :

- Pour RI Antananarivo, le moteur diesel de 10 MW au Fuel lourd pour la production de base et, en cas de besoin de production de pointe supplémentaire, la TAC de 18 MW au Gasoil ;
- Pour Antsiranana et RI Toamasina, les moteurs diesel de 3,5 MW au Fuel lourd pour la production de base et les moteurs diesels de 1 MW au Gasoil pour la pointe;
- Pour Ambilobe, Ambositra et Morondava, les moteurs diesels de 250 kW au Gasoil.

MdE-ORE-ADER-JIRAMA Page 54 sur 134

Le coût complet de référence thermique pour la en base est de 176 \$/MWh; il est composé d'un coût d'anticipation de 165 \$/kW et d'un coût proportionnel de 157 \$/MWh.

Le coût d'anticipation de référence (celui du moyen de pointe) est de 105 \$/kW.

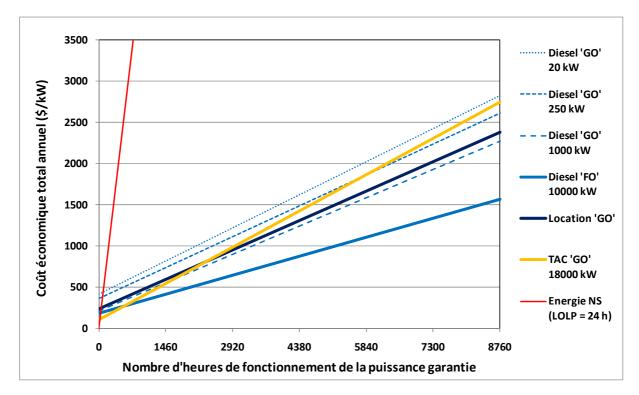


Figure 7-13 : Fonction de coût des unités thermiques de référence

En pratique, il conviendra de saisir les opportunités de prix (conjonctures favorables sur les marchés des équipements), quitte à modifier légèrement les puissances unitaires des groupes, à condition de ne pas modifier la planification élaborée.

En effet, l'évolution du coût des moyens de production thermique est sujette à d'importantes fluctuations induites par le coût des matières premières (acier, cuivre...), celui de la main d'œuvre, du transport, du montage ou encore celui des terrains à acheter et à équiper afin de pouvoir y installer de nouveaux ouvrages industriels. De même, l'abondance ou la rareté d'un type d'équipement sur le marché peut impacter son prix à la baisse ou à la hausse.

7.6.3 Estimation du Coût implicite de l'Energie Non Servie (ou Coût de la Défaillance)

Rappelons que l'objectif du PEMC est de minimiser la fonction de coût global correspondant à la somme actualisée des dépenses d'investissement, des charges fixes et variables d'exploitation et des charges de combustible. Cette fonction de coût global est à minimiser sous la contrainte du critère de qualité de service recherché, **LOLP**, que l'on peut exprimer en nombre d'heures par an.

Rechercher cet « optimum sous contrainte » revient à rechercher le minimum absolu d'une nouvelle fonction objectif correspondant à la précédente augmentée de l'énergie non servie à condition de valoriser cette dernière par le « Coût de l'Energie Non Servie ».

Ainsi, si la droite d'équation $Y = \mathbf{B} \times \mathbf{U} + \mathbf{A}$, représente, en fonction de sa durée d'utilisation U, le coût total annuel du moyen thermique de référence pour la production de pointe (la TAC de 18 MW fonctionnant au Gasoil dans le cadre de notre étude), alors on peut estimer le **CENS** comme suit :

$$CENS = [B \times LOLP + A] / LOLP$$

Ainsi, le CENS est de l'ordre de 4700 \$/MWh pour un LOLP de 24 heures par an.

Par construction le coût implicite de la défaillance égale son coût explicite. C'est à dire que nous considérons ici que chaque MWh non fourni induit une perte de création de richesse d'environ 4700 \$ sur l'économie malgache. Or ce coût explicite de la défaillance est le même quelque soit le lieu où l'on se situe à Madagascar ; c'est un principe de non discrimination entre les différents territoires du pays. Le CENS est donc d'environ 4700 \$/MWh pour toutes les exploitations étudiées. Ce CENS induit une qualité de service implicite pour chacune des exploitations considérées. A savoir :

- Un LOLP de 47 h/an pour Antsiranana et RI Toamasina (avec le Diesel de 1 MW comme candidat thermique de référence pour la production) ;
- Un LOLP de 83 h/an pour Ambositra, Morondava et Ambilobe (avec le Diesel de 250 kW comme candidat thermique de référence pour la production).

MdE-ORE-ADER-JIRAMA Page 56 sur 134

7.7 Inter comparaison des candidats hydroélectriques et thermiques

A partir des analyses effectuées dans les deux sous-chapitres précédents, on construit ci-après une description de la compétitivité relative des candidats hydroélectriques et thermiques.

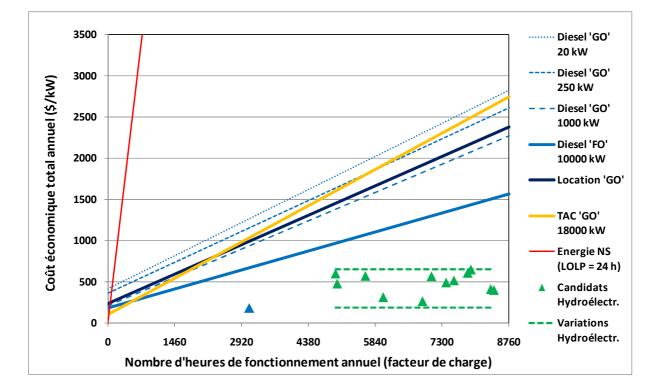


Figure 7-14 : Inter comparaison des candidats hydroélectriques et thermiques

L'analyse de ces premiers résultats permet de livrer les principales conclusions suivantes :

- Le 4^{ème} groupe d'Andekaleka (triangle bleu sur le graphique), dont la production est modulable du fait de l'aménagement du barrage régulateur de Fempona, a un coût complet qui se révèle particulièrement compétitif (environ 60 \$/MWh);
- Les autres candidats hydroélectriques peuvent être compétitifs pour la production de base ou de semi-base (coûts complets de 50 et 120 \$/MWh). La prise en compte des aléas pesant sur l'EOD (hydrologique notamment) précisera cette compétitivité;
- Les exploitations qui disposent de candidats hydroélectriques s'éloignent de l'optimum économique lorsque les groupes thermiques sont durablement utilisés avec des facteurs de charge annuels supérieurs à 50% environ (4380 heures/an).

MdE-ORE-ADER-JIRAMA Page 57 sur 134

7.8 Autres équipements potentiels de production

7.8.1 Production éolienne

Dans le cadre de la présente étude, on retient un coût d'investissement hors intérêts intercalaires de l'ordre de 1500 \$/kW qui se décompose globalement comme suit :

- La turbine et le mât, qui représentent environ 65% de ce coût ;
- Le BOP (balance of plant, y.c. GC) qui en représente environ 15%;
- La connexion au réseau qui pèse pour environ 15%;
- Et les frais de maîtrise d'œuvre (MOE) et de maîtrise d'ouvrage (MOA) : 5%.

Du fait de la courte durée de construction de ces ouvrages, on ne retient qu'une année d'intérêts intercalaires. Les autres principales hypothèses retenues sont les suivantes :

- Une durée de vie économique des installations considérée être égale à 20 ans ;
- Des charges d'exploitation et de maintenance (*O&M costs*) estimées annuellement à 2% des coûts de construction ;
- Nous retenons pour les besoins de l'étude un facteur de charge de 25%, soit 2190 h de fonctionnement par an. Ce niveau de production correspond à celui de sites très bien ventés avec une très bonne disponibilité des équipements de production.

Le coût complet de production de l'éolien est donc environ 110 à 120 \$/MWh. Ce mode de production d'électricité peut donc s'avérer intéressant à étudier pour le système électrique malgache à condition de trouver des sites bien ventés (cf. annexe 12.7).

Par ailleurs, l'intermittence associée à ce type de production, impose souvent la nécessité d'un complément de production modulable pour satisfaire la demande avec le niveau de qualité requis (cf. LOLP). Cet effet induit peut impliquer un renchérissement du coût de revient pour le système de la production d'origine éolienne, dégradant de fait sa rentabilité. Ainsi, compte tenu du niveau de compétitivité des meilleurs candidats de production hydroélectrique, on ne retient pas d'option de production éolienne dans le cadre du présent PEMC. Il sera néanmoins judicieux de disposer assez rapidement d'une étude précisant le potentiel de production éolienne à Madagascar et ses coûts.

MdE-ORE-ADER-JIRAMA Page 58 sur 134

7.8.2 Production photovoltaïque

Dans le cadre de la présente étude, on retient un coût d'investissement hors intérêts intercalaires de l'ordre de 2,2 \$/Wc qui se décompose globalement comme suit :

- Les modules photovoltaïques, qui représentent environ 50% de ce coût ;
- Le BOS (Balance Of Système) qui en représente environ 40%;
- La connexion au réseau qui pèse pour environ 5% (à condition que la ferme solaire soit réalisée à proximité du réseau);
- Et les frais de maîtrise d'œuvre (MOE) et de maîtrise d'ouvrage (MOA) : 5%.

Du fait de la rapidité de construction de ces ouvrages, on ne retient qu'une année d'intérêts intercalaires. Les autres principales hypothèses retenues sont les suivantes :

- Une durée de vie économique des installations considérée être égale à 20 ans ;
- Des charges d'exploitation et de maintenance (*O&M costs*) estimées annuellement à 2% des coûts de construction ;
- Nous retenons pour les besoins de l'étude un facteur de charge de 20%, soit environ 1750 h de fonctionnement par an. Ce niveau de production correspond à celui de sites très bien ensoleillés (cf. annexe 12.8) avec une bonne disponibilité des équipements de production.

Le coût complet de production anticipé pour le PV est donc environ 180 à 190 \$/MWh. Ce mode de production d'électricité, encore plus cher que l'éolien, se révèle donc non compétitif pour les systèmes électriques malgaches de taille équivalente à celle des 6 exploitations ici étudiées.

Par ailleurs, l'intermittence associée à ce type de production, imposerait de plus la nécessité d'un stockage d'électricité et/ou d'un complément de production modulable pour satisfaire la demande avec le niveau de qualité requis (cf. LOLP), cet effet induit impliquant un renchérissement du coût de revient de la production photovoltaïque.

On ne retient donc pas d'option de production photovoltaïque dans le cadre du présent PEMC.

7.8.3 Compétitivité relative de l'Eolien et du Photovoltaïque

Comme indiqué, les coûts de référence des moyens de production Eolien et Photovoltaïque sont actuellement moins compétitifs que les productions alternatives classiques pour alimenter les 6 exploitations JIRAMA faisant l'objet de la présente étude. On construit ci-après une description de cette situation.

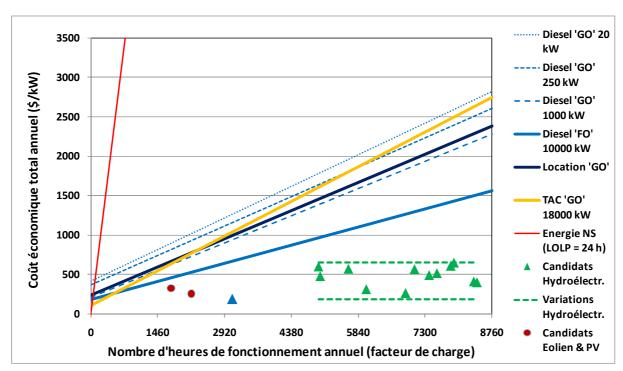


Figure 7-15 : Compétitivité relative de l'Eolien et du Photovoltaïque

A noter que l'intermittence associée à ce type de production, imposerait de plus la nécessité d'un stockage d'électricité et/ou d'un complément de production modulable pour satisfaire la demande avec le niveau de qualité requis (cf. LOLP), cet effet induit impliquant un renchérissement du coût de revient de la production photovoltaïque.

7.9 Sensibilité sur la compétitivité relative des candidats hydrauliques et thermiques

Les analyses ci-après révèlent la robustesse de la compétitivité des candidats hydrauliques.

Diesel 'GO 20 kW 20 kW (i) Actualisation = 12% (ii) Prix du baril = 60 \$ Diesel 'GO Diesel 'GO' ique total annuel (\$/kW) annuel (\$/kW) 250 kW 250 kW Diesel 'GO' 1000 kW 2500 2500 1500 1500 TAC 'GO' 18000 kW Energie NS (LOLP = 24 h) Energie NS (LOLP = 24 h) Coût Coût 4380 5840 uel (facteur de charge) 3500 ······ Diesel 'GO' (i) Actualisation = 12%20 kW (ii) Prix du baril = 60 \$ Diesel 'GO' 3000 Coût économique total annuel (\$/kW) 250 kW Diesel 'GO' 2500 1000 kW Diesel 'FO' 2000 10000 kW Location 'GO' 1500 TAC 'GO' 18000 kW 1000 **Energie NS** (LOLP = 24 h)500 Candidats Hydroélectr. 0 **Variations** Hydroélectr. 0 1460 2920 4380 5840 7300 8760 Nombre d'heures de fonctionnement annuel (facteur de charge)

Figure 7-16 : Sensibilités à (i) une actualisation de 12% et à (ii) un prix du baril de 60 \$

Les conditions de stress utilisées sont extrêmes : taux d'actualisation de 12% (qui pèse sur l'hydraulique particulièrement) et, simultanément, prix du pétrole très bas (le coût complet du thermique pour la base baisse à 152 \$/MWh dont une part proportionnelle de 131 \$/MWh).

Dans ces conditions extrêmes, les coûts complets des candidats hydrauliques varient dans une plage allant de 55 à 142 \$/MWh, ce qui confirme la robustesse de leur compétitivité (cf. annexe 12.9).

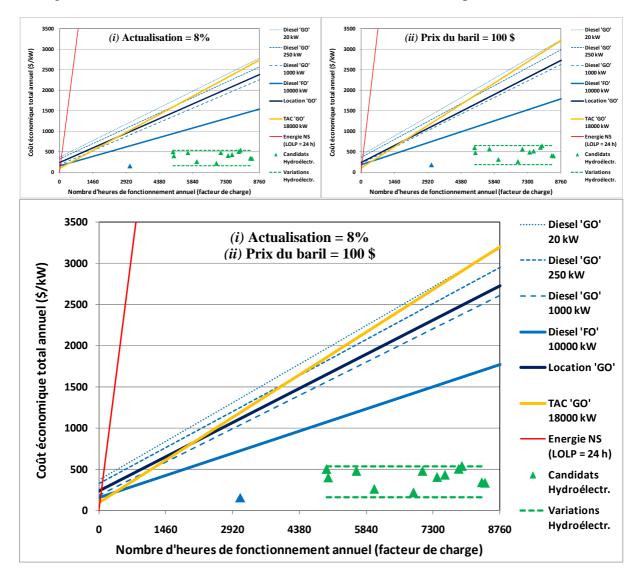


Figure 7-17 : Sensibilités à (i) une actualisation de 8% et à (ii) un prix du baril de 100 \$

On peut ici observer les importants *upsides* qui peuvent être procurés par un développement soutenu de l'hydroélectricité à Madagascar, lors de situations macroéconomiques où le taux d'actualisation serait plutôt bas et le prix du pétrole élevé. A noter qu'un taux d'actualisation de 8% et, simultanément, un prix du pétrole de 100 \$/bl, fait raisonnablement partie du champ des possibles ; il en résulte un coût complet du thermique pour la base de 199 \$/MWh dont une part proportionnelle de 183 \$/MWh.

Dans ces conditions, les coûts complets des candidats hydrauliques varient dans une plage allant de 33 à 101 \$/MWh, ce qui confirme leur fort intérêt stratégique (cf. annexe 12.10).

8 Construction et résultats des PEMC des exploitations prises isolément

8.1 Rappel méthodologique

8.1.1 Principes généraux de construction des PEMC

L'étude économique des 6 systèmes électriques de la JIRAMA consiste à comparer les coûts globaux futurs qui seront supportés suivant différentes options de développement basées sur des moyens de production hydroélectriques ou thermiques.

Dans le cas d'un développement exclusivement fondé sur des moyens de production thermiques, l'effort d'investissement sera lissé, mais au prix d'une augmentation importante au fil du temps des coûts d'exploitation. Dans les autres cas, le système devra supporter le poids élevé des investissements mais bénéficiera en échange de coûts d'exploitation moins élevés (réduction de la facture en combustibles par exemple). Il est donc essentiel de mesurer lequel de ces choix améliore au mieux le coût global du système, afin de préciser le bien fondé économique de chacune des options proposées.

La détermination du programme d'équipement s'effectue à partir de simulations (effectuées avec le logiciel WASP dans le cadre de la présente étude) permettant d'estimer l'adéquation entre l'offre et la demande des exploitations au fil des années à venir. Par définition, le programme optimal est celui qui conduit au moindre coût global pour le système électrique sur la période étudiée et à qualité de service égale. Ce coût global comprend, les dépenses d'investissement des nouveaux moyens de production mis en service dans l'avenir et les charges fixes et variables d'exploitation. Mais il faut également tenir compte de la qualité de service recherchée par le système électrique, car un parc de production moins important en volume coûtera moins cher mais conduira à une qualité de service fortement dégradée. C'est pourquoi chaque quantité d'électricité demandée mais non satisfaite du fait de l'insuffisance de moyen de production est pénalisée par un terme correctif égal au Coût de l'Energie Non Servie (CENS ou coût de la défaillance) estimé dans le cadre de cette étude à 4700 \$/MWh.

Dans l'approche économique, les dépenses et les recettes survenant à des dates différentes sont pondérées en fonction du taux d'actualisation. Le programme d'équipement réputé optimal doit donc minimiser la somme actualisée des dépenses d'investissement, des charges fixes et variables d'exploitation et des coûts de défaillance : c'est le PEMC.

MdE-ORE-ADER-JIRAMA Page 63 sur 134

8.1.2 Courbes de charge du RI Antananarivo

La courbe de charge du RI Antananarivo est marquée par une très faible saisonnalité : l'essentiel de la variabilité de la demande est expliqué par les fluctuations horaires.

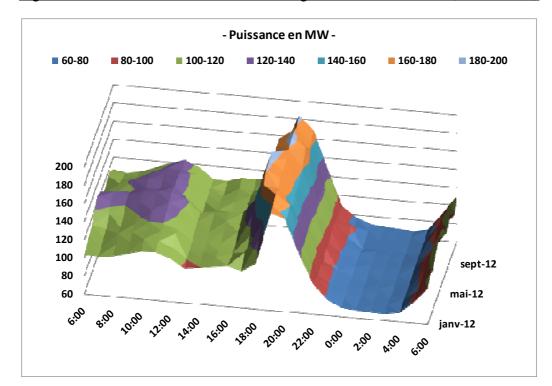
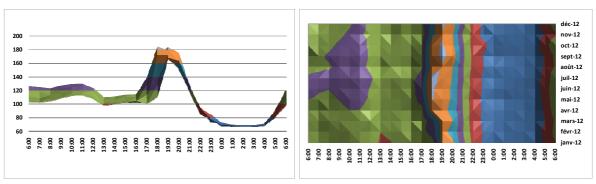



Figure 8-1 : Variabilité de la courbe de charge du RI Antananarivo (Année 2012)

La courbe de charge du RI Antananarivo permet, sur la base des prévisions de demande en énergie et en puissance, de générer, à partir du logiciel WASP utilisé dans le cadre de cette étude, les courbes de charge des années 2013 à 2030.

Les mêmes principes sont utilisés pour déterminer les courbes de charges des autres exploitations sur la période étudiée (2013 à 2030).

8.1.3 Cas d'un système exclusivement thermique

Supposons le cas d'un système thermique pur sur une année donnée. L'optimisation de la gestion est aisée. Pour être assuré de minimiser les dépenses d'exploitation (qui sont principalement des dépenses de combustibles), il suffit, pour satisfaire la demande de chaque heure, d'appeler les moyens de production disponibles par coûts variables d'exploitation croissants (*merit order*). Il se peut que, du fait d'un nombre insuffisant de moyens à disposition, il ne soit pas possible de satisfaire la totalité de la demande, auquel cas le système électrique doit faire face à une défaillance de production.

Même si le parc de production est suffisant pour répondre à la demande à court terme, il peut ne plus l'être à moyen terme du fait de la croissance de la demande ou du déclassement des unités de production les plus anciennes. On assiste alors à une croissance continue de la probabilité de défaillance, qui atteint vite un niveau non compatible avec une fourniture d'électricité de qualité, donc qui impose l'installation de moyens de production supplémentaires. Selon la forme de la courbe de charge, l'état du parc existant et les coûts respectifs des différentes options, il peut être plus intéressant économiquement (c'est-à-dire moins coûteux pour l'ensemble du système) de développer l'un ou l'autre des équipements candidats. L'intérêt économique des candidats les uns par rapport aux autres est ainsi estimé à l'aide du logiciel WASP ce qui permet de déterminer le ou les équipements à rajouter au parc de production afin d'en minimiser le coût de fonctionnement global. On détermine ainsi, au fil des années, un programme de développement économiquement optimal des moyens de production du parc.

8.1.4 Cas d'un système mixte thermique et hydroélectrique

La gestion d'un système mixte thermique et hydroélectrique est plus difficile à optimiser. En particulier, une mauvaise utilisation des capacités de régulation des réservoirs hydrauliques peut conduire à un manque d'eau pendant les périodes les plus sèches de l'année et donc à une utilisation accrue des moyens thermiques de coûts proportionnels les plus élevés, et à de nombreuses situations de défaillance.

MdE-ORE-ADER-JIRAMA Page 65 sur 134

Pour éviter d'arriver à de telles situations, il faut parvenir à trouver des règles d'utilisation de l'eau des réservoirs, au fil de l'année. Les méthodes couramment employées sont le suivi de trajectoires guides pour le stock des réservoirs et celle dite des « valeurs de stock ».

La méthode des courbes-guides consiste à établir une trajectoire de référence à partir de la simulation de données historiques. Dans le cas de la méthode des « valeurs de stock », il s'agit d'estimer, pour chaque réservoir, l'espérance de gain futur que l'on peut attendre des kWh hydrauliques en stock. Si cette valeur est basse, la ressource hydraulique sera utilisée préférentiellement au thermique pour satisfaire la demande. Si cette valeur est élevée, il est économiquement plus rentable de satisfaire la demande par des moyens thermiques et de garder l'eau en réserve pour l'avenir, lorsque le bénéfice apporté au système sera plus élevé. La valeur implicite de l'eau dépend de la période de l'année et du niveau de remplissage des réservoirs. Si le niveau des réservoirs est bas à la fin de la période humide, indice d'une sécheresse, la valeur implicite de l'eau sera élevée et le thermique sera fortement sollicité afin d'éviter que le système soit défaillant pendant la période sèche. A l'inverse, si le réservoir est encore relativement plein avant l'arrivée de la période humide, la valeur implicite de l'eau sera très basse et il sera préférable d'utiliser prioritairement l'eau disponible en stock pour satisfaire la demande et éviter au maximum de déverser cette eau pendant la période humide suivante.

D'un point de vue pratique, les valeurs implicites de l'eau sont calculées en simulant à partir d'un instant et d'un niveau de stock donné, tous les futurs possibles du système électrique (en terme de demande, de disponibilité thermique et de conditions hydrologique), et en évaluant de façon probabiliste le gain que l'on peut escompter de la présence d'un kWh hydraulique supplémentaire en stock. Une fois ces valeurs de l'eau calculées, la simulation de la gestion du système électrique est effectuée en croisant les chroniques hydrologiques avec les tirages au sort de la disponibilité des moyens de production thermique. Les mêmes indicateurs que dans le cas d'un système thermique pur sont calculés.

La détermination du programme d'équipement optimal s'effectue selon une méthodologie identique à celle du système thermique pur, à la différence près que les candidats au développement du système peuvent être de nouveaux aménagements hydroélectriques aussi bien que des moyens de production thermiques.

MdE-ORE-ADER-JIRAMA Copyright © 2013 MAVETHIC CONSULTING - Tous droits réservés

8.1.5 Etablissement du PEMC

Rappelons que le coût global des différents programmes d'équipement possible est la somme actualisée des dépenses d'investissement, des charges fixes et variables d'exploitation et des coûts de défaillance sur toute la période étudiée (2013-2030). Il correspond à l'ensemble des dépenses que supporte le système du fait des équipements existants et mis en service à l'avenir afin de satisfaire la demande avec la qualité de service recherchée.

Le Plan d'Expansion au Moindre Coût (PEMC), tel qu'estimé par WASP dans le cadre de la présente étude, correspond à la séquence de mises en service d'aménagements hydroélectriques ou thermiques minimisant l'ensemble de ces coûts globaux.

Cependant, l'adéquation entre l'offre et la demande va inévitablement se tendre au fil des prochaines années du fait de la conjonction des différents points suivants :

- Déclassement des plus vieilles centrales dont les performances sont dégradées ;
- Réduction du nombre de centrales en location qui pèsent sur les charges récurrentes ;
- Augmentation de la demande.

Ainsi, afin de pouvoir satisfaire cette adéquation au moindre coût, est-il nécessaire de mettre en service des moyens de production thermique dont les caractéristiques (nombre et taille) varient selon les réseaux étudiés.

Pour chaque réseau, une étude de l'évolution de la répartition des charges et des flux permettra de définir précisément le lieu optimal, du point de vue du réseau, pour installer ces équipements. De même, des études sur les renforcements de réseau devront éventuellement être effectuées.

8.2 PEMC du RI Antananarivo

La construction du PEMC du RI Antananarivo confirme que les projets de centrales hydrauliques sont les options de développement à moindre coût pour le long terme.

Néanmoins, compte tenu du temps nécessaire pour développer puis construire ces ouvrages hydrauliques (mises en service au plus tôt à partir de 2017), il est nécessaire de mettre en service environ 40 MW de moyens de production thermique de référence pour la base d'ici 2015, et 10 MW de plus d'ici l'arrivée massive des premiers aménagements hydroélectriques, afin de pouvoir satisfaire au moindre coût l'adéquation entre l'offre et la demande.

Ce sont ensuite environ 159 MW de puissance hydraulique qui seront installés de 2017 à 2019. La quantité d'énergie apportée au système par ces ouvrages hydrauliques reporte à 2026 les nouveaux besoins en moyens de production. La satisfaction de ces besoins se matérialise par la mise en service de 15 MW de production hydraulique et par environ 10 MW par an de production thermique d'appoint.

Le coût total actualisé sur la période étudiée est de 735,4 M\$.

Il résulte de ce PEMC un coût de revient de la production de l'ordre de 65 \$/MWh.

De plus, les analyses de sensibilités effectuées (cf. annexe 12.11) révèlent que :

- (i) Chacun des projets hydrauliques majeurs est plus compétitif que l'option thermique de référence et trouve sa place dans le système avec l'augmentation de la demande. Sur la période étudiée, un seul de ces aménagements (Sahofika du fait de son coût complet le plus bas) est inséré dans le système. Une analyse affinée des 4 projets majeurs devraient emporter le choix final ;
- (ii) Les projets de centrales hydrauliques restent les options de développement au moindre coût pour le système électrique même dans des conditions très favorables aux options thermiques (taux d'actualisation de 12%, prix du baril de pétrole à 60 \$);
- (iii)Avec une croissance plus forte de la demande, la rentabilité économique des projets de centrales hydrauliques est renforcée et leurs dates optimales de MSI anticipées.

MdE-ORE-ADER-JIRAMA Page 68 sur 134

Figure 8-2: Plan d'Expansion au Moindre Coût (PEMC) du RI Antananarivo

			•				Puis	Puissance	e												
Unité: MW				2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	5029	2030
	Total Parc installé (MW)	(MM)		283	283	219	219	219	211	211	211	211	211	211	211	211	211	211	211	211	211
	Hydro installé			146	146	146	146	146	146	146	146	146	146	146	146	146	146	146	146	146	146
Parc installé	Thermique installé	va.		137,2	137,2	137,2	137,2	137,2	137,2	137,2	137,2	137,2	137,2	137,2	137,2	137,2	137,2	137,2	137,2	137,2	137,2
	Cum retrait Therm installé JIRAMA	installé J	IIRAMA			-11,2	-11,2	-11,2	-11,2	-11,2	-11,2	-11,2	-11,2	-11,2	-11,2	-11,2	-11,2	-11,2	-11,2	-11,2	-11,2
	Cum retrait Loc & IPP installé	IPP insta	llé			-53	-53	-53	-61	-61	-61	-61	-61	-61	-61	-61	-61	-61	-61	-61	-61
	Cumul Total Hydro installé (MW)	installé	(MM)					21	54	159	159	159	159	159	159	159	159	171	171	174,5	174,5
		Total H	Total Hydro installé					21	33	105								12		3,5	
			Talaviana					21													
			Mahitsy															12			
		100	Uily																	3,5	
		Į	Antetezambato																		
	Hydro installé		Tsinjoarivo																		
Droiote			Lohavanana																		
536011			Andekaleka G4						33												
		AVR	Sahofika							105											
			Mahavola Ranomafana																		
	Cumul Total Therm (MW)	n (MW)				40	40	40	20	20	20	20	20	20	20	20	09	70	80	6	100
		Total Therm	herm			40			10								10	10	9	9	9
	Thermique installé		10 MW			40			10								10	10	10	10	10
			18 MW TC																		
į	Total installé (1) (MW)	(W)		283	283	259	259	280	315	420	420	420	420	420	420	420	430	452	462	476	486
Office	Hydro installé			146	146	146	146	167	200	305	305	305	305	305	305	305	305	317	317	321	321
	Thermique installé	,5		137	137	113	113	113	115	115	115	115	115	115	115	115	125	135	145	155	165
Demande (2) (MW)	AW)			196	201	206	213	221	229	237	246	258	269	281	293	306	320	334	349	365	381

EQUILIBRE OFFRE - DEMANDE

MdE-ORE-ADER-JIRAMA Page 69 sur 134

EQUILIBRE OFFRE - DEMANDE

Energie

Unité : GWh					l														
Moyens de production	Site	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	5029	2030
Hydro AFL		639,4	639,4	639,4	639,4	774,3	240,6	240,6	240,6	240,6	240,6	240,6	240,6	240,6	240,6	308,7	308,7	332,8	332,8
Hydro A VR		29,9	86,3	93,5	2,96	73,3	628,1	934,8	976, 1	1027	1077,5	1128,3	1179,6	1232,6	1280,3	1278,5	1322,9	1346,8	1380,5
1015	Antsirabe	2'0	2'0																
1016	Antsirabe	0,7	0,7																
1017	Antsirabe	0,8	9,0																
1309	Antsirabe	4,4	5,1																
40MW	Mandroseza	129,2	135,8	97,4	108	75,8	78,9	4,9	5	5,3	10,6	21,2	59	30,8	31,8	31,4	33,2	35,3	38,9
SHERRITT	Ambohimanambola	46	49,3	37,1	41,7	21,4	25,4	2,4	2,3	2,4	2,5	2,5	6,9	13,8	13,8	13	12,8	12,6	14,6
IPP 20MW	Ambohimanambola	10	10																
AGGR	Ambohimanambola	46,6	54,3																
EDM	Antsirabe	8,1	8,7																
HYDELEC	Ambohimanambola	12	12	8,5	10	5,6													
10MW	Tana			155,9	174,3	165,4	179	16,6	25	35,2	41,3	54	50,2	61,3	88, 1	103,6	141	180,2	234
18MW TC	Tana																		
Total Offre (GWh)	(1)	8,776	977,8 1 003,1	1 031,8	1 069,6	1 115,8	1 152,0 1	1 199,3	1 249,0	310,5	1 372,5 1	1 437,6	1 506,6	1 579,1	1 654,6 1	1 735,2	1 818,6	7,706	2 000,8
Hydro		719,3	725,7	732,9	735,6	847,6	2'898	1 175,4	1 216,7	1 267,6	1 318,1	1 368,9	1 420,2	1 473,2	1 520,9	1 587,2	1 631,6	1 679,6	1 713,3
Hydro AFL		639,4	639,4	639,4	639,4	774,3	240,6	240,6	240,6	240,6	240,6	240,6	240,6	240,6	240,6	308,7	308,7	332,8	332,8
Hydro AVR		79,9	86,3	93,5	96,2	73,3	628,1	934,8	976, 1	1 027,0	1 077,5	1 128,3	1 179,6	1 232,6	1 280,3	1278,5	1 322,9	1 346,8	1 380,5
Therm		258,5	277,4	298,9	334,0	268,2	283,3	23,9	32,3	42,9	54,4	68,7	86,4	105,9	133,7	148,0	187,0	228,1	287,5
Total Demande (GWh) (2)	(2)	972,2	998,1 1 027	7,	1 065,9 1 108,7	1 108,7	1 153,7 1	1 200,8	1 250,3	1 311,5 1 374,2 1 440,0 1 509,1	374,2	1 440,0		1 581,7	1 657,9	1 737,9	1 821,9 1 910,2		2 003,1
Gap en énergie (GWh) (1) - (2)	(1) - (2)						-1,7	-1,5	-1,3	-1,0	7,1-	-2,4	-2,5	-2,6	-3,3	-2,7	-3,3	-2,5	-2,3

8.3 PEMC du RI Toamasina

La construction du PEMC du RI Toamasina confirme que le coût de revient du projet Volobe Amont (plus de 120 \$/MWh) est relativement élevé compte tenu de l'aléa hydrologique et de la forte saisonnalité des apports (faibles débits d'étiage) qui sont associés au productible de cet aménagement.

Au total, ce sont environ 25 MW de moyens de production thermique de référence pour la base qui devront être mis en service d'ici 2016 afin de pouvoir satisfaire au moindre coût l'adéquation entre l'offre et la demande.

C'est ensuite l'équivalent d'1 MW de puissance thermique (essentiellement de base) qu'il faut mettre en service en moyenne par an pour respecter, au moindre coût, l'objectif de qualité de service retenu.

Le coût total actualisé sur la période étudiée est de 167,4 M\$.

Il résulte de ce PEMC un coût de revient de la production de l'ordre de 139 \$/MWh.

Figure 8-3: Plan d'Expansion au Moindre Coût (PEMC) du RI Toamasina

					Ĕ	UILIB	EQUILIBRE OFFRE - DEMANDE	FRE -	· DEM,	ANDE											
			•				Puis	Puissance	.												
Unité : MW				2013	2014	2015	2016 2	2017	2018	2019 2	2020	2021	2022	2023	2024	2025 2	2026 20	2027 20	2028 2	2029 2	2030
	Total Parc installé (MW)	(MM)		45,1	1,72	1,72	8,9	8'9	8,9	8'9	8'9	8'9	8'9	8'9	8'9	8'9	8,9	8,9	8,9	8'9	8,9
	Hydro installé			8'9	8'9	8'9	8'9	8'9	8'9	8'9	8'9	6,8	8'9	8'9	8'9	8'9	8'9	8'9	8'9	8'9	6,8
Parc installé	Thermique installé	'n		38,31	38,31	38,31	38,31	38,31	38,31	38,31	38,31	38,31	38,31	38,31	38,31	38,31	38,31	38,31	38,31	38,31	38,31
	Cum retrait Therm installé JIRAMA	ı installé 、	JIRAMA		-18	-18							-18								-18
	Cum retrait Loc & IPP installé	IPP insta	allé				-20,31	-20,31	-20,31	-20,31	-20,31	-20,31	-20,31	-20,31	-20,31	-20,31	-20,31 -2	-20,31 -2	-20,31 -2	-20,31	-20,31
	Cumul Total Hydro installé (MW)	installe	é (MW)																		
		Total F	Total Hydro installé																		
	711-77-11		Volobe amont																		
Projets	Hydro installe	AFL																			
								\dashv	1					1	1			\dashv			
	Cumul Total Therm (MW)	n (MW)				5	22	25	25	25	30	30	30	30	30	35	35	35	35	36	37
		Total Therm	Therm			2	20				2					2				1	-
	Thermique installé		5 MW 1 MW			2	20				2					2				1	-
	Total installé (1) (MW)	MW)		45,1	27,1	32,1	31,8	31,8	31,8	31,8	36,8	36,8	36,8	36,8	36,8	8,11,8	41,8	41,8	8,11	42,8	43,8
Office	Hydro installé			8,9	8,9	8,9	8,9	8,9	8,9	8,9	8,9	8,9	8,9	8,9	8,9	8,9	8,9	8,9	8,9	8,9	8,9
	Thermique installé	é		38,3	20,3	25,3	25,0	25,0	25,0	25,0	30,0	30,0	30,0	30,0	30,0	35,0	35,0	35,0	35,0	36,0	37,0
Demande (2) (MW)	////			23,5	24,1	24,8	25,6	26,5	27,5	28,5	29,5	30,6	31,6	32,7	33,8	34,9	36,2	37,4	38,7	40,1	41,5

MdE-ORE-ADER-JIRAMA Page 72 sur 134

EQUILIBRE OFFRE - DEMANDE

Energie

Unité : GWh					İ														
Moyens de production	Site	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
Hydro AFL Hydro AVR	Volobe	41,9	41,9	41,9	41,9	41,9	41,9	41,9	41,9	41,9	41,9	41,9	41,9	41,9	41,9	41,9	41,9	41,9	41,9
571	Toamasina	12,1	17,1																
572 573	Toamasina Toamasina	17,1	17,2																
EN21	Toamasina	3,8	4,1	5,4															
EN22	Toamasina	9'2	6	18,8															
EN23	Toamasina	2,2	2,9	19															
ENL1	Toamasina	0,4	0,5	2,8															
1MW	Toamasina																	3,2	9,9
5MW	Toamasina			19,3	74,5	26	84,1	89,3	94,5	100,1	105,4	111,2	117	122,8	129,7	136,1	143	147,2	151,3
Total Offre (GWh)	(1)	105,6	108,7	112,2	116,4	120,9	126,0	131,2	136,4	142,0	147,3	153,1	158,9	164,7	171,6	178,0	184,9	192,3	199,8
Hydro		41,9	41,9	41,9	41,9	41,9	41,9	41,9	41,9	41,9	41,9	41,9	41,9	41,9	41,9	41,9	41,9	41,9	41,9
Hydro AFL Hydro AVR		41,9	41,9	41,9	41,9	41,9	41,9	41,9	41,9	41,9	41,9	41,9	41,9	41,9	41,9	41,9	41,9	41,9	41,9
Therm		63,7	8,99	70,3	74,5	0,67	84,1	89,3	94,5	100,1	105,4	111,2	117,0	122,8	129,7	136,1	143,0	150,4	157,9
Total Demande (GWh) (2)	(2)	105,5	108,8	112,6	116,7	121,2	126,0	131,1	136,4	141,9	147,3	153,0	158,9	165,0	171,4	178,1	185,1	192,3	199,8
Gap en énergie (GWh) (1) - (2)	(1) - (2)		-0,1	-0,4	-0,3	-0,3								-0,3		-0,1	-0,2	0,0	

8.4 PEMC d'Ambositra

La construction du PEMC d'Ambositra confirme que le projet de centrale hydraulique de Tazonana (coût de revient inférieur à 50 \$/MWh) est une option de développement à moindre coût pour le long terme.

Néanmoins, compte tenu du temps nécessaire pour développer puis construire cet ouvrage hydraulique (mise en service au plus tôt en 2017), il est nécessaire de mettre en service un moyen de production thermique de 250 kW en 2015 afin de pouvoir satisfaire au moindre coût l'adéquation entre l'offre et la demande.

Suite à la mise en service de la centrale hydraulique de Tazonana en 2017, la quantité d'énergie apportée au système reporte les nouveaux besoins en moyen de production au-delà de l'horizon de l'étude.

Le coût total actualisé sur la période étudiée est de 8,6 M\$.

Il résulte de ce PEMC un coût de revient de la production de l'ordre de 174 \$/MWh.

Figure 8-4: Plan d'Expansion au Moindre Coût (PEMC) d'Ambositra

			•				Puis	Puissance	0												
Unité : MW				2013 2	2014 2	2015 2	2016 2	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
	Total Parc installé (MW	(MM)		1,69	1,69	1,21	1,21	1,21	98'0	98'0	98'0	98'0	98'0	98'0	98'0	0,20	0,50	0,50	0,20	0,50	
Parc installé	Hydro installé Thermique installé	'n		1,69	1,69	1,69	1,69	1,69	1,69	1,69	1,69	1,69	1,69	1,69	1,69	1,69	1,69	1,69	1,69	1,69	1,69
	Cum retrait Therm installé JIRAMA	n installé J	IRAMA			-0,48	-0,48	-0,48	-0,83	-0,83	-0,83	-0,83	-0,83	-0,83	-0,83	-1,19	-1, 19	-1, 19	-1,19	-1,19	-1,69
	Cumul Total Hydro installé (MW)	installé	(MW)					2,2	2,2	2,2	2,2	2,2	2,2	2,2	2,2	2,2	2,2	2,2	2,2	2,2	2,2
		Total H	Total Hydro installé					2,2													
			Tazonana 1					2,2													
o spice	Hydro installé	AFL																			
		AVR																			
	Cumul Total Therm (MW)	n (MW)				0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25
		Total Therm	herm			0,25															
	Thermique installé		0,25 MW			0,25															
;	Total installé (1) (MW)	(WW		1,69	1,69	1,46	1,46	3,66	3,31	3,31	3,31	3,31	3,31	3,31	3,31	2,95	2,95	2,95	2,95	2,95	2,45
Offre	Hydro installé Thermique installé	' 0'		1,69	1,69	1,46	1,46	2,20	2,20	2,20	2,20	2,20	2,20	2,20	2,20	2,20	2,20	2,20	2,20	2,20	2,20
Demande (2) (MW)	MW)			1,02	1,06	1,10	1,15	1,20	1,26	1,33	1,40	1,48	1,53	1,59	1,66	1,73	1,80	1,87	1,95	2,03	2,11

MdE-ORE-ADER-JIRAMA

EQUILIBRE OFFRE - DEMANDE

EQUILIBRE OFFRE - DEMANDE

Energie

Unité : GWh					İ														
Moyens de production	Site	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	5029	2030
Hydro AFL						4,70	2,00	5,30	5,70	00'9	6,30	09'9	06'90	2,30	2,60	8,00	8,40	8,80	9,30
Hydro A VR																			
429	Ambositra	0,20	0,20																
433	Ambositra	06'0	06'0																
909	Ambositra	0,10	0,20	0,40	09'0														
2209	Ambositra	1,10	1,10	1,20	1,20														
2321	Ambositra	1,60	1,60	1,60	1,70														
250kW	Ambositra			1,00	1,00														
Total Offre (GWh)	(1)	3,90	4,00	4,20	4,50	4,70	2,00	5,30	2,70	00'9	6,30	09'9	06'9	7,30	7,60	8,00	8,40	8,80	9,30
Hydro						4,70	2,00	5,30	2,70	00'9	6,30	09'9	06'9	7,30	7,60	8,00	8,40	8,80	9,30
Hydro AFL						4,70	2,00	5,30	5,70	00'9	6,30	09'9	06'9	7,30	2,60	8,00	8,40	8,80	9,30
Hydro AVR																			
Therm		3,90	4,00	4,20	4,50														
Total Demande (GWh) (2)	(2)	3,90	4,10	4,30	4,50	4,70	2,00	5,30	2,70	00'9	6,30	09'9	06'9	7,30	7,60	8,00	8,40	8,80	9,30
Gap en énergie (GWh) (1) - (2)	(1) - (2)		-0,10	-0,10															

8.5 PEMC d'Antsiranana

La construction du PEMC d'Antsiranana nécessite dès 2015 la mise en service de 15 à 20 MW de moyens de production thermique de référence pour la base afin de pouvoir satisfaire au moindre coût l'adéquation entre l'offre et la demande.

C'est ensuite l'équivalent d'1 MW de puissance thermique (essentiellement de base) qu'il faut mettre en service en moyenne par an pour respecter, au moindre coût, l'objectif de qualité de service retenu.

Le coût total actualisé sur la période étudiée est de 130,2 M\$.

Il résulte de ce PEMC un coût de revient de la production de l'ordre de 209 \$/MWh.

Figure 8-5: Plan d'Expansion au Moindre Coût (PEMC) d'Antsiranana

				Ú		EQUILIBRE OFFRE - DEMANDE	TTAT	- DEM	ANDE											
						Pui	Puissance	ě												
Unité: MW			2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
	Total Parc install	(MW)	24	24																
	Hydro installé																			
Parc installé	Thermique installé	lé	24,3	24,3	24,3	24,3	24,3	24,3	24,3	24,3	24,3	24,3	24,3	24,3	24,3	24,3	24,3	24,3	24,3	24,3
	Cum retrait Then	Cum retrait Therm installé JIRAMA			4,8	4,8	-4,8	-4,8	4,8	4,8	4,8	4,8	4,8	4,8	4,8	4,8	4,8	4,8	4,8	4,8
	Cum retrait Loc & IPP installé	ß IPP installé			-19,5	-19,5	-19,5	-19,5	-19,5	-19,5	-19,5	-19,5	-19,5	- 19,5	- 19,5	-19,5	-19,5	-19,5	-19,5	-19,5
	Cumul Total Therm (MW)	m (MW)			17,5	17,5	17,5	17,5	17,5	21,0	21,0	21,0	21,0	21,0	24,5	24,5	24,5	28,0	28,0	28,0
Projets		Total Therm			17,5					3,5					3,5			3,5		
	Thermique installé	3,5 MW 1,0 MW			17,5					3,5					3,5			3,5		
	Total installé (1) (MW)	MW)	24,3	24,3	17,5	17,5	17,5	17,5	17,5	21,0	21,0	21,0	21,0	21,0	24,5	24,5	24,5	28,0	28,0	28,0
Offre	Hydro installé Thermique installé	lé	24,3	24,3	17,5	17,5	17,5	17,5	17,5	21,0	21,0	21,0	21,0	21,0	24,5	24,5	24,5	28,0	28,0	28,0
Demande (2) (MW)	WW)		10,0	10,4	10,9	11,4	12,0	12,7	13,4	14,2	15,0	15,7	16,5	17,3	18,2	19,1	20,1	21,2	22,3	23,4

MdE-ORE-ADER-JIRAMA Page 78 sur 134

EQUILIBRE OFFRE - DEMANDE

Energie

Unité: GWh

Moyens de production	Site	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
Hydro A FL Hydro A VR																			
1008	Antsiranana																		
1009	Antsiranana																		
2801	Antsiranana																		
AGGR	Antsiranana	19,8	22, 1																
ENEL	Antsiranana	27,8	27,8																
1MW	Antsiranana																		
3,5MW	Antsiranana			52,4	55,4	58,8	62,3	66,3	70,4	74,8	26	83,4	88,2	93,2	98,5	104,2	110,2	116,6	123,5
Total Offre (GWh)	(1)	47,6	49,9	52,4	55,4	58,8	62,3	66,3	70,4	74,8	0,67	83,4	88,2	93,2	98,5	104,2	110,2	116,6	123,5
Hydro																			
Therm		47,6	49,9	52,4	55,4	58,8	62,3	66,3	70,4	74,8	0,67	83,4	88,2	93,2	98,5	104,2	110,2	116,6	123,5
Total Demande (GWh) (2)	(2)	47,5	49,8	52,4	55,4	58,7	62,3	66,2	70,3	74,7	78,9	83,3	88,0	93,0	98,3	104,0	110,0	116,4	123,2
Gap en énergie (GWh) (1) - (2)	(1) - (2)																		

8.6 PEMC d'Ambilobe

La construction du PEMC d'Ambilobe nécessite dès 2016 la mise en service de l'équivalent de trois groupes de 250 kW afin de pouvoir satisfaire au moindre coût l'adéquation entre l'offre et la demande.

C'est ensuite l'équivalent d'un groupe de 250 kW tous les 3 à 4 ans en moyenne qu'il faut mettre en service pour satisfaire la demande et simultanément respecter l'objectif de qualité de service retenu au moindre coût.

Le coût total actualisé sur la période étudiée est de 17,5 M\$.

Il résulte de ce PEMC un coût de revient de la production de l'ordre de 319 \$/MWh.

Figure 8-6: Plan d'Expansion au Moindre Coût (PEMC) d'Ambilobe

				ш	QUILIE	EQUILIBRE OFFRE - DEMANDE	FFRE.	- DEM	ANDE											
						Puis	Puissance	ě												
Unité: MW			2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	5029	2030
	Total Parc installé (MW)		1,64	1,64	1,64	1,64	1,64	1,64	1,64	1,64	1,64	0,64	0,64	0,64	0,64	0,64	0,64	0,64	0,64	
Parc installé	Hydro installé Thermique installé		1,64	1,64	1,64	1,64	1,64	1,64	1,64	1,64	1,64	1,64	1,64	1,64	1,64	1,64	1,64	1,64	1,64	1,64
	Cum retrait Therm installé JIRAMA	WA										-1,00	-1,00	-1,00	-1,00	-1,00	-1,00	-1,00	-1,00	-1,64
	Cum retrait Loc & IPP installé																			
	Cumul Total Therm (MW)				0,50	0,75	0,75	0,75	0,75	0,75	0,75	1,25	1,25	1,25	1,25	1,25	1,50	1,50	1,50	1,75
Projets	Total Therm	u			0,50	0,25						0,50					0,25			0,25
	Thermique installé 0,25 MW	MW			0,50	0,25						0,50					0,25			0,25
į	Total installé (1) (MW)		1,64	1,64	2,14	2,39	2,39	2,39	2,39	2,39	2,39	1,89	1,89	1,89	1,89	1,89	2,14	2,14	2,14	1,75
Offire	Hydro installé Thermique installé		1,64	1,64	2,14	2,39	2,39	2,39	2,39	2,39	2,39	1,89	1,89	1,89	1,89	1,89	2,14	2,14	2,14	1,75
Demande (2) (MW)	MW)		1,13	1,16	1,20	1,24	1,29	1,34	1,39	1,44	1,50	1,54	1,59	1,63	1,68	1,74	1,79	1,85	1,90	1,96

MdE-ORE-ADER-JIRAMA Page 81 sur 134

2030

2029

2028

2027

2026

8,6

8,6

6,3 2

2 6,1

2 5.9

2 5.7

8,6

8,3

8,

-0,03

-0,05

-0,03

-0,02

-0,02

-0,08

-0,03

-0,01

-0,04

-0,04

Gap en énergie (GWh) (1) - (2)

8

otal Demande (GWh)

Hydro Therm 6,3

5,6

5,4

6,9

EQUILIBRE OFFRE - DEMANDE

2025 1,9 2024 1,9 6,9 6,9 2023 5,5 6,7 1,9 6,6 2021 1,6 6,2 1,5 6,0 2019 1,5 2018 1,5 5,6 2017 1,5 5,4 5,4 2016 1,5 1,5 1,7 0,7 5,2 2015 1,5 1,5 1,6 0,6 2014 1,5 1,5 0,5 2013 1,5 1,5 1,4 0,5 Site Ambilobe Ambilobe Ambilobe Ξ Moyens de production Total Offre (GWh)

2310 4127

Unité: GWh

Hydro AFL Hydro AVR

0,25MW

8.7 PEMC de Morondava

Malgré le déclassement de 0,6 MW de capacité de production thermique obsolète fin 2014, la construction du PEMC de Morondava ne nécessite la mise en service d'un premier groupe de 250 kW qu'en 2017.

Outre le remplacement d'une capacité de 1,3 MW qui arrive en fin de vie en 2023, et qui est remplacée à l'identique, c'est l'équivalent d'un groupe de 250 kW tous les 2 à 3 ans en moyenne qu'il faut mettre en service pour satisfaire la demande et simultanément respecter l'objectif de qualité de service retenu au moindre coût.

Le coût total actualisé sur la période étudiée est de 26,1 M\$.

Il résulte de ce PEMC un coût de revient de la production de l'ordre de 277 \$/MWh.

Figure 8-7: Plan d'Expansion au Moindre Coût (PEMC) de Morondava

				Ù		EQUILIBRE OFFRE - DEMANDE	7 7 1	- DEM	IANDE											
						Puř	Puissance	ë												
Unité: MW			2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
	Total Parc installé (MW)		3,55	3,55	2,60	2,60	2,30	2,30	2,30	2,30	2,30	1,94	0,64	0,64	0,64	0,64	0,64	0,64	0,64	0,64
Parc installé	Hydro installé Thermique installé		3.55	3.55	3.55	3.55	3.55	3.55	3.55	3.55	3.55	3.55	3.55	3.55	3.55	3.55	3.55	3.55	3.55	3.55
		AMA)))	-0,95	-0,95	-1,25	-1,25	-1,25	-1,25	-1,25	-1,25	-2,55	-2,55	-2,55	-2,55	-2,55	-2,55	-2,55	-2,55
	Cum retrait Loc & IPP installé											-0,364	-0,364	-0,364	-0,364	-0,364	-0,364	-0,364	-0,364	-0,364
	Cumul Total Therm (MW)						0,25	0,25	0,50	0,50	0,50	1,00	2,00	2,00	2,25	2,25	2,25	2,50	2,50	2,75
Projets	Total Therm	ırm.					0,25		0,25			0,50	1,00		0,25			0,25		0,25
	Thermique installé 0,2	0,25 MW					0,25		0,25			09'0	1,00		0,25			0,25		0,25
;	Total installé (1) (MW)		3,55	3,55	2,60	2,60	2,55	2,55	2,80	2,80	2,80	2,94	2,64	2,64	2,89	2,89	2,89	3,14	3,14	3,39
Office	Hydro installé Thermique installé		3,55	3,55	2,60	2,60	2,55	2,55	2,80	2,80	2,80	2,94	2,64	2,64	2,89	2,89	2,89	3,14	3,14	3,39
Demande (2) (MW)	MW)		1,96	1,99	2,03	2,08	2,13	2,20	2,27	2,34	2,43	2,51	2,61	2,70	2,81	2,91	3,03	3,14	3,27	3,40

MdE-ORE-ADER-JIRAMA Page 84 sur 134

EQUILIBRE OFFRE - DEMANDE

Energie

Moyens de production	Site	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	5029	2030
Hydro AFL Hydro A VR																			
499	Morondava	9'0	8'0																
2203	Morondava	1,2	1,3																
2226	Morondava	0,7	0,7	0,7	0,8	0,8	0,8	0,8	9,0	0,8	8'0								
2261	Morondava	1,4	1,4	1,5	1,6	1,6	1,6	1,5	1,6	1,7	2,0								
2262	Morondava	1,1	1,1	1,8	1,9	1,9	2,0	1,8	1,9	2,0	2,0								
2263	Morondava	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1								
4102	Morondava	0,4	0,5	0,7	0,7														
4126	Morondava	6,0	0,3	1,3	1,3	1,3	1,3	1,3	1,3	1,3	1,3	1,3	1,3	1,3	1,3	1,3	1,3	1,3	1,3
HFF	Morondava	1,2	1,2	1,5	1,6	1,6	1,7	1,5	1,7	1,9									
0,25 MW	Morondava					1,0	1,0	2,1	2,1	2,1	4,2	10,6	11,1	11,7	12,3	12,9	13,6	14,3	15,0
Total Offre (GWh)	(1)	8,2	8,4	9,8	9,0	9,3	9,5	10,1	10,5	10,9	11,4	11,9	12,4	13,0	13,6	14,2	14,9	15,6	16,3
Hydro																			
Therm		8,2	8,4	8,6	0,6	6,9	9,6	10,1	10,5	10,9	11,4	11,9	12,4	13,0	13,6	14,2	14,9	15,6	16,3
Total Demande (GWh) (2)	(2)	8,2	8,4	8,7	8,9	9,3	9,6	10,0	10,4	10,9	11,4	11,9	12,4	13,0	13,6	14,3	14,9	15,6	16,4
Gap en énergie (GWh) (1) - (2)	(1) - (2)	-0,03	-0,02	-0,05			-0,12						-0,02		-0,01	-0,05	-0,02	-0,02	-0,06

Unité: GWh

9 Analyse économique des interconnexions proposées

9.1 Méthodologie

On rappelle ci-après que, pour n systèmes électriques $A_1, A_2, ... A_n$, la méthodologie retenue pour estimer l'intérêt économique des interconnexions proposées est la suivante :

- Si $C(A_i)$ est le coût total actualisé du PEMC de chaque système A_i pris isolément ;
- Si $C(A_1 + A_2 + ... + A_n)$ est le coût total actualisé du PEMC des systèmes $A_1, A_2, ... A_n$, pris conjointement ;
- Si **C**(*Lignes*) est le coût total actualisé des lignes d'interconnexion ;
- Alors, l'interconnexion est réputée rentable « si et seulement si » :

$$C(A_1 + A_2 + ... + A_n) + C(Lignes) < C(A_1) + C(A_2) + ... + C(A_n)$$

9.2 Coût des lignes d'interconnexion

Compte tenu des durées de développement et de construction nécessaires les dates de mise en service au plus tôt de ces interconnexions sont 2018 pour les lignes "Antsirabe-Ambositra" et "Antsiranana-Ambilobe", puis 2019 pour la ligne "Andekaleka-Toamasina". L'échéancier des coûts de construction de ces lignes (exprimé en k\$) est fourni dans le tableau suivant :

Figure 9-1 : Coûts de construction et échéanciers des lignes d'interconnexion (k\$)

		Е	chéancier (de dépense	?S	Coût de
Lignes d'interconnexion	Tension	Année -4	Année -3	Année -2	Année -1	construction
Andekaleka-Toamasina	138 kV	2000	1000	29160	19440	51600
Antsirabe–Ambositra	63 kV		700	7100	4940	12740
Antsiranana–Ambilobe	63 kV		800	7500	5000	13300

On considère pour chacune de ces lignes d'interconnexion :

- Des frais de maîtrise d'œuvre (MOE) et de maîtrise d'ouvrage (MOA) représentant 10% des coûts de construction ;
- Une durée de vie économique de 30 ans ;
- Des charges d'exploitation et de maintenance (*O&M costs*) estimés annuellement à 3% des coûts de construction.

MdE-ORE-ADER-JIRAMA Page 86 sur 134

9.3 Interconnexion du RI Antananarivo, du RI Toamasina et d'Ambositra (RIATA)

Compte tenu du temps nécessaire pour développer et construire les lignes d'interconnexions, les bénéfices induits par leur mise en service ne sont perceptibles qu'à partir de 2019.

La quantité d'énergie apportée au système par les 161,2 MW de capacités hydrauliques mises en services entre 2017 et 2019 (159 MW sur RIA et 2,2 MW sur Ambositra) est absorbée par le système interconnecté au cours de la première moitié de la décennie 2020. Du fait d'une consommation plus élevée que sur le RIA pris isolément, les nouveaux besoins de production apparaissent à partir de 2026. Ils sont satisfaits par la mise en service de près de 200 MW de production hydroélectrique, dont un second aménagement hydroélectrique majeur en 2027, afin de satisfaire la demande et respecter l'objectif de qualité de service au moindre coût.

L'évolution de la répartition des charges et des flux sur le RIATA sera directeur des lieux optimums, pour le réseau, où devront être installés ces groupes thermiques, de même que les renforcements de réseau qui devront éventuellement être effectués.

Le coût total actualisé sur la période étudiée, y compris celui de l'interconnexion, est de 869,6 M\$. Il est inférieur de l'ordre de 4 à 5% à la somme des coûts actualisés des PEMC des trois exploitations prises indépendamment l'une de l'autre. L'intérêt économique de cette interconnexion est donc juste avéré.

Il résulte de ce PEMC un coût de revient de la production de l'ordre de 72 \$/MWh.

Figure 9-2: Plan d'Expansion au Moindre Coût (PEMC) du RIATA

			•					-	dissance	2											
Unité: MW				2013	2014 2	2015 2	2016 2	2017	2018 2	2019 2	2020	2021	2022	2023	2024 2	2025 20	2026 20	2027 20	2028 2029		2030
	Total Parc installé (MW)	(MM)		330	330	247	227	227	219	219	219	219	219	219	219	218	218	218	218	218	218
	Hydro installé			152,8	152,8	152,8	152,8	152,8	152,8	152,8	152,8	152,8	152,8	152,8	152,8	152,8 1	152,8 1	152,8 1	152,8 15	152,8 1	152,8
Parc installé	Thermique installé			177,2	177,2	177,2	177,2	177,2	177,2	177,2	177,2	177,2	177,2	177,2	177,2	177,2	177,2	177,2	177,2	177,2	177,2
	Cum retrait Therm installé JIRAMA	installé 👅	IIRAMA			-29,7	-29,7	-29,7	-30,0	-30,0	-30,0	-30,0	-30,0	-30,0	-30,0	-30,4	-30,4	-30,4	-30,4	-30,4	-30,4
	Cum retrait Loc & IPP installé	IPP insta	ellé e			-53,0	-73,3	-73,3	-81,3	-81,3	-81,3	-81,3	-81,3	-81,3	-81,3	-81,3	-81,3	-81,3	-81,3 -6	-81,3	-81,3
	Cumul Total Hydro installé (MW)	installé	(MW)					23,2	56,2	161,2	161,2	161,2	161,2	161,2	161,2	161,2 1	173,2 3	356,7 35	356,7 35	356,7 39	356,7
		Total H	Total Hydro installé					23,2	33	105							12	183,5			
			Talaviana					21													
			Mahitsy														12				
			Lily															3,5			
		5	Tazonana 1					2,2													
		<u> </u>	Antetezambato															180			
	Hydro installé		Volobe amont																		
			Tsinjoarivo																		
Projets			Lohavanana																		
200			Andekaleka G4						33												
		AVR	Sahofika							105											
			Mahavola Ranomafana																		
	Cumul Total Therm (MW)	n (MW)				45,3	65,3	65,3	75,3	75,3	75,3	75,3	75,3	75,3	75,3	75,3	75,3	75,3	75,3 7	75,3	75,3
		Total Therm	herm			45,25	20		9										_		
			10 MW			40	_		10											L	
	Thermique installé		18 MW																		
			5 MW			2	20														
			0,25 MW			0,25															
	Total installé (1) (MW)	(W)		330	330	293	292	315	320	455	455	455	455	455	455	455	467	029	029	920	650
Office	Hydro installé			153	153	153	153	176	500	314	314	314	314	314	314	314	326	510	510	510	510
	Thermique installé			177	177	140	139	139	141	141	141	141	141	141	141	141	141	141	141	141	141
Demande (2) (MW)	MW)			221	226	232	240	249	258	267	277	290	302	315	329	343	358	373	390	407	425

EQUILIBRE OFFRE - DEMANDE

MdE-ORE-ADER-JIRAMA Page 88 sur 134

EQUILIBRE OFFRE - DEMANDE Energie

1661,9 527,4 2 212,2 1 661, 2 223, 2 189, 527, 2030 5,1 3,6 2 111,3 2 125,3 2 104,8 1 659,7 2029 445.1 3,5 629, 5,1 2 015,4 2 031,7 1 643,3 374,8 2 018,1 1643,3 374.8 2028 5,1 1,1 1 616,2 1 924,0 1 940,8 1 930,6 1616,2 314.4 2027 2,8 0,2 1 836,9 1834,6 367,7 1296.1 1 663, 296, 39,5 2026 0,3 0,2 21,7 96 367,7 299,6 1 296,7 1 596,3 1 751,6 299,6 1296,7 155, 38,2 0,3 0,2 19,6 84,7 2025 1 551,2 299,6 1251,6 299,6 1251,6 1673,7 2024 17,9 32,2 9,4 0,1 1 599,6 299,6 1 200,3 1 499,9 98,8 299,6 1200.3 598, 27,5 2023 41 54,6 0,1 527,8 299,6 1 147.0 -2,1 1 525,7 1 446.6 299,6 2022 25,2 2,7 3,9 0,1 1 459,4 -2,6 1 456,8 299,6 1 393,7 299,6 1 094,1 1094.1 3,8 2021 16 2,6 0,1 299,6 1 040,4 1 392,4 1389,7 299,6 1040,4 1 340,0 2020 3,7 6,3 0,1 299,6 1 334,8 995,8 -2,4 1 295,4 299,6 995.8 5,3 3,6 943,8 299,6 644,2 284,7 283,1 299,6 644,2 0,3 0,4 0,3 45,7 78,9 339, 2018 93 833,9 234,6 921,2 833,9 1 242, 96,1 321, 2017 0,3 0,4 0,4 0,3 5,5 780,4 680,9 99,5 191,0 187,1 2016 111,1 6,089 0,5 0,5 0,7 0,5 66,1 99,5 1 144,6 690,9 97.8 1 149,1 680,9 104,4 778, 2015 3,2 11,1 11,9 13 97.8 5,5 0,3 0,4 0,4 0,3 13,2 1111,0 775,6 680,9 94,7 1117,6 081,6 8,880 773,6 680,9 92,7 315, 0,6 0,7 120 10 10 37 12,3 3,8 12,3 12,3 17,9 17,9 17,9 17,9 0,3 0,3 2013 92,7 Ambohimanambola Ambohimanambola **Ambohimanambola Ambohimanambola** Site **Toamasina Toamasina Toamasina** Toamasina **Toamasina Toamasina** Toamasina **Ambositra** Ambositra Ambositra Ambositra Antsirabe **Ambositra Ambositra** Antsirabe Antsirabe Ξ 2 Gap en énergie (GWh) Fotal Demande (GWh) Moyens de production Hydro AFL Hydro AVR Total Offre (GWh) Therm PP 20MW

Jnité: GWh

9.4 Interconnexion d'Antsiranana et d'Ambilobe (RIDA)

Compte tenu du temps nécessaire pour développer et construire la ligne d'interconnexion, les bénéfices induits par sa mise en service ne sont perceptibles qu'à partir de 2019.

La construction du PEMC de RIDA confirme que le projet de centrale hydraulique d'Andranomamofona (coût de revient inférieur à 70 \$/MWh) est une option de développement à moindre coût pour le long terme.

Néanmoins, compte tenu du temps nécessaire pour développer puis construire cet ouvrage hydraulique (mise en service au plus tôt en 2017), il est nécessaire de mettre en service 15 à 20 MW de moyens de production thermique en 2015 afin de pouvoir satisfaire au moindre coût l'adéquation entre l'offre et la demande.

Suite à la mise en service de la centrale hydraulique d'Andranomamofona en 2018, la quantité d'énergie apportée au système reporte les nouveaux besoins en moyen de production au-delà de l'horizon de l'étude.

Il résulte de ce PEMC un coût de revient de la production de l'ordre de 162 \$/MWh.

Le coût total actualisé sur la période étudiée, y compris celui de l'interconnexion, est de 100 M\$. Il est inférieur d'environ 30% à la somme des coûts actualisés des PEMC des deux exploitations prises indépendamment l'une de l'autre. L'intérêt économique de cette interconnexion est donc avéré.

MdE-ORE-ADER-JIRAMA Page 90 sur 134

Figure 9-3: Plan d'Expansion au Moindre Coût (PEMC) du RIDA

				Ш	aullie	EQUILIBRE OFFRE - DEMANDE	FRE -	DEM/	ANDE											
						Puis	Puissance	Ф												
Unité: MW			2013	2014	2015	2016 2	2017	2018 2	2019 20	2020 20	2021 20	2022 20	2023 20	2024 20	2025 20	2026 20	2027 2	2028 2	5029	2030
	Total Parc installé (MW	(MM)	25,9	25,9	1,6	1,6	1,6	1,6	1,6	1,6	1,6	9,0	9,0	9,0	9'0	9'0	9,0	9'0	9'0	
Parc installé	Hydro installé Thermique installé	\d	25.94	25.94	25.94	25.94	25.94	25.94	25.94	25.94	25.94	25.94	25.94	25.94	25.94	25.94	25.94	25.94	25.94	25.94
	Cum retrait Them installé JIRAMA	ı installé JIRAMA			8,4															6,4
	Cum retrait Loc & IPP installé	IPP installé			-19,5	-19,5	-19,5	-19,5	-19,5	-19,5	-19,5	-19,5	-19,5	-19,5	-19,5	-19,5	-19,5	-19,5	-19,5	-19,5
	Cumul Total Hydro installé (MW)	o installé (MW)						15	15	15	15	15	15	15	15	15	15	15	15	15
	Alletai orbiti	Total Hydro installé						15												
	a you o marana	AFL Andranomamofona				\vdash		15		_	_	\vdash		F	-					
Projets	Cumul Total Therm (MW)	m (MW)			17,8	17,8	17,8	17,8	17,8	17,8	17,8	17,8	17,8	17,8	17,8	17,8	17,8	17,8	17,8	17,8
•		Total Therm			17,8															
	Thermique installé	1,0 MW																		
		3,5 MW 0,25 MW			17,5															
;	Total installé (1) (MW)	(WW	25,9	25,9	19,4	19,4	19,4	34,4	34,4	34,4	34,4	33,4	33,4	33,4	33,4	33,4	33,4	33,4	33,4	32,8
Offre	Hydro installé							15,0	15,0	15,0	15,0	15,0	15,0	15,0	15,0	15,0	15,0	15,0	15,0	15,0
	Thermique installé	é	25,9	25,9	19,4	19,4	19,4	19,4	19,4	19,4	19,4	18,4	18,4	18,4	18,4	18,4	18,4	18,4	18,4	17,8
Demande (2) (MW)	(WIV)		11,1	11,6	12,1	12,7	13,3	14,0	14,8	15,6	16,5	17,2	18,1	18,9	19,9	50,9	21,9	23,0	24,2	25,4

MdE-ORE-ADER-JIRAMA Page 91 sur 134

EQUILIBRE OFFRE - DEMANDE

Unité : GWh					i	9.6													
Moyens de production	Site	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	5029	2030
Hydro A FL Hydro A VR							68,2	72,2	76, 1	80,2	83,9	2,78	91,8	96	100	103,9	107,3	109,8	110,9
1008	Antsiranana																		
1009	Antsiranana																		
2801	Antsiranana																		
	Antsiranana	24,7	27,1																
	Antsiranana	27,8	27,8																
	Ambilobe			0,3	0,4	9,0													
	Ambilobe			0,2	0,3	0,5													
	Ambilobe			0,2	0,3	0,5													
0,25MW				0,2	0,4	9,0													0,1
1MW																			
3,5MW				9,99	59,4	62,1	0,1	0,2	2,0	1,3	2	2,8	3,7	4,7	6,3	8,4	11,4	15,5	21,3
Total Offre (GWh)	(1)	52,5	54,9	2,73	8'09	64,3	68,3	72,4	8'92	81,5	85,9	90,5	95,5	100,7	106,3	112,3	118,7	125,3	132,3
Hydro							68,2	72,2	76,1	80,2	83,9	7,78	91,8	0,96	100,0	103,9	107,3	109,8	110,9
Hydro AFL							68,2	72,2	76,1	80,2	83,9	87,7	91,8	06,0	100,0	103,9	107,3	109,8	110,9
Hydro AVR																			
Therm		52,5	54,9	57,7	60,8	64,3	0,1	0,2	0,7	1,3	2,0	2,8	3,7	4,7	6,3	8,4	11,4	15,5	21,4
Total Demande (GWh)	(2)	52,4	54,8	9'29	8'09	64,3	68,1	72,2	9'92	81,2	85,6	90,2	95,1	100,4	105,9	111,8	118,1	124,7	131,8
Gap en énergie (GWh) (1) - (2)	1) - (2)																		

10 Plans Directeurs de trois régions pour l'Electrification Rurale

Liminaire

Madagascar est un pays contrasté, constitué d'étendues très peu habitées et de territoires densément peuplés. La densité nationale, estimée à 34,5 hab./km² en 2010, ne reflète pas l'occupation spatiale du pays. Entre 2004 et 2010, le taux de couverture électrique estimé en milieu rural est passé de 3,9% à 7%. Une augmentation significative que l'Etat Malgache, par le relai de l'ADER, entend renforcer à travers la mise en œuvre de la politique nationale en matière d'électrification rurale. Dans cette perspective, l'ADER a pour objectif de développer des Plans Directeurs pour l'Electrification Rurale pour chacune des 22 Régions de Madagascar afin de réduire les déséquilibres régionaux et de s'inscrire dans le processus de décentralisation qui permet aux élus locaux d'être les principaux interlocuteurs des programmes de développement de leur région. La méthodologie suivie pour établir ces Plans Directeurs pour l'Electrification Rurale est construite en 3 principales étapes :

- L'analyse « Spatiale » permettant, à partir d'une estimation de l'Indicateur du Potentiel de Développement (IPD) des différentes localités, de sélectionner des Pôles de Développement et leur population de couverture, avant d'être hiérarchisés ;
- L'analyse de la demande qui précise le nombre de clients potentiels par catégorie de consommateurs, leurs consommations spécifiques puis, par agrégation, la demande résultante tant en énergie qu'en puissance ;
- L'établissement des plans directeurs pour l'électrification rurale au niveau régional qui définit les schémas d'approvisionnement, avec une raisonnable priorité donnée aux énergies renouvelables (hydroélectricité, biomasse, puis éolien et solaire), avant que ne soient étudiés plus précisément les différents projets identifiés au sein des Régions une fois la planification effectuée.

Cette méthodologie appliquée par l'ADER, avec le concours du Bureau d'études « Innovation Energie Développement », aux 3 premières régions visées que sont BOENY, SAVA et SOFIA. La région actuellement en cours d'étude est celle de VATOVAVY FITOVINANY. Le Collectif partage la méthodologie adoptée pour ces études et en rappelle ci-après les principales conclusions (Source : Elaboration de Plans Directeurs pour l'Electrification Rurale – Régions BOENY, SAVA & SOFIA – ADER/IED – Janvier 2011).

MdE-ORE-ADER-JIRAMA Page 93 sur 134

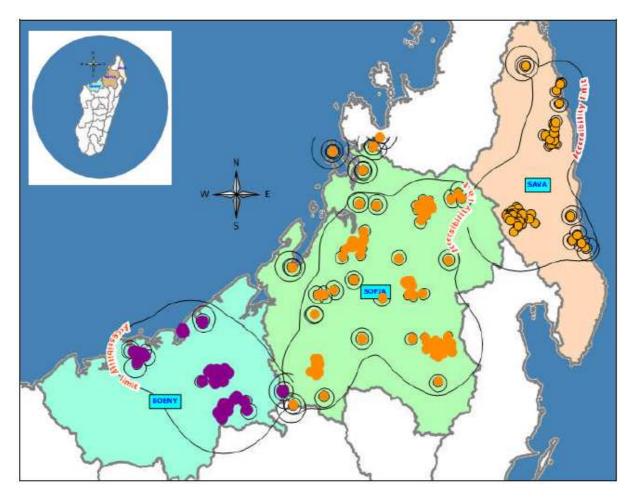
10.1 Analyse spatiale

Du fait de la spécificité du monde rural (demande énergétique généralement faible, population dispersée, etc...), les projets d'électrification de ces zones géographiques sont souvent non rentables, d'où un besoin structurel de subvention des investissements. Cependant, l'existence des subventions d'investissements ne suffit pas à répondre aux questions posées. La problématique se pose en ces termes :

« Comment utiliser au mieux les fonds disponibles ? »

La première étape de la démarche proposée par l'outil d'analyse spatiale GEOSIM, utilisé par l'ADER, consiste en amont à s'appuyer sur les concepts de Pôles de Développement pour identifier et hiérarchiser les localités à fort potentiel de développement économique et social qu'il conviendrait d'électrifier en priorité, dans le but de maximiser l'impact économique et social de l'électrification rurale à l'échelle du territoire étudié. Le choix a été fait de définir le Pôle de développement comme un espace où l'habitat et les activités se concentrent pour atteindre une certaine densité. Le Fokontany est la plus petite unité administrative présentant un habitat significatif et pouvant être assimilée à un centre de consommation potentiel d'électricité.

Une sélection de Pôles est effectuée suivant un processus de décision respectant la logique participative du projet. La méthodologie adoptée consiste en tout premier lieu à définir une grille multicritères, spécifique à chaque région, permettant de calculer pour chaque localité un indicateur à valeur qualitative, traduisant la qualité des services offerts par celle-ci : l'**Indicateur du Potentiel de Développement (IPD)**. Cette grille vise à conférer une certaine objectivité à l'estimation du potentiel de développement des Fokontany.


Construit sous le prisme de l'IDH (Indicateur du Développement Humain, développé par le PNUD fin des années 1980), cet indicateur mesure la capacité d'une localité à enrayer la pauvreté sur le territoire constitué par elle-même et par les localités dites de sa "périphérie". C'est un indice composite, adimensionnel, calculé en établissant la moyenne de trois indices quantifiant respectivement l'accès à l'éducation, l'accès aux soins de santé et la productivité économique locale.

MdE-ORE-ADER-JIRAMA Page 94 sur 134

Ci-après le descriptif des tâches du module de planification de l'outil GEOSIM :

- Calcul de l'Indicateur du Potentiel de Développement (IPD) des localités ;
- Sélection des Pôles de Développement sur la base de cet indicateur. Doivent être désignés comme Pôles de développement les Fokontany dont l'électrification bénéficierait au plus grand nombre en terme d'accès à l'emploi (créations d'activités productives de par l'arrivée de l'électricité) et à des services sociaux modernisés (centres de santé, écoles, eau potable);
- Calcul de la population de couverture des Pôles : population intrinsèque au Pôle et population des localités situées dans sa zone d'influence (hinterlands) ;
- Hiérarchisation des Pôles de développement d'après leur couverture ;
- Identification des zones isolées : localités ayant une faible accessibilité aux services sociaux et économiques fournis par les Pôles de Développement.

Figure 10-1 : Analyse spatiale de BOENY, SAVA et SOFIA (Source ADER/IED)

MdE-ORE-ADER-JIRAMA Page 95 sur 134

Les principales conclusions pour chacune des trois régions étudiées sont précisées ci-après.

a) Région de BOENY

Hormis Mahajanga, on observe trois grandes zones de concentration de Pôles de développement (autour d'Ambato Boeny, d'Ambovomavo Diego Kely et de Mitsinjo). Les deux premières zones sont les plus grandes et correspondent à des zones fortement rizicoles, qui plus est facile d'accès puisque situées sur la route nationale reliant Mahajanga à Antananarivo. La troisième zone (celle de Mitsinjo) est une zone d'activité importante (présence notamment d'une sucrerie), située sur le tracé de la route prévue entre Katsepy (de l'autre côté de la baie de Mahajanga) et la localité de Soalala, où les activités d'extraction de fer se développent rapidement.

Ce constat conduit aux préconisations suivantes :

- Promotion des Pôles de développement pour jouer le rôle de locomotive et générer des effets d'entraînement rapides et durables au niveau des communes rurales ayant des liens socioéconomiques;
- Augmentation des investissements régionaux dans les secteurs à forte valeur ajoutée par la viabilisation des zones potentielles et la mise en place d'un cadre institutionnel incitatif;
- Promotion d'une économie rurale tournée vers le marché à travers le développement des filières agricoles porteuses.

b) Région de SAVA

On observe quatre principales zones de concentration de Pôles de développement. Deux observations majeures peuvent être faites quant à leur localisation :

- Les Pôles de développement identifiés se situent à proximité du réseau routier ;
- Les zones de concentration correspondent à des zones agricoles et notamment rizicoles pour la plus dense d'entre elles (zone de Beanana).

MdE-ORE-ADER-JIRAMA Page 96 sur 134

c) Région de SOFIA

On observe sept zones principales de concentration de Pôles de développement.

L'occupation territoriale des Pôles de développement offre de belles perspectives en matière d'accès aux plus grand nombre d'habitants. Les localités isolées (concentrant 80% des difficultés d'accès aux services disponibles au sein des Pôles), se situent à des distances des premiers Pôles bien moindres que celles observées par exemple au niveau de la région Boeny. En électrifiant l'ensemble des Pôles identifiés, le rayonnement au niveau de la région serait tel que l'on peut espérer réduire de façon significative les inégalités d'accès à des services modernisés.

Les observations faites au niveau des deux autres régions restent valables :

- Les Pôles de développement identifiés se situent à proximité du réseau routier ;
- Les zones de concentration correspondent à des zones agricoles.

10.2 Analyse de la demande

La demande dans ces zones rurales est essentiellement d'origine domestique. Parmi les clients, on ne recense que très peu de clients économiques, dont la contribution à la consommation d'une localité est indispensable pour assurer une activité rentable à l'opérateur, optimiser l'utilisation des équipements de production et promouvoir un réel développement socioéconomique au sein de la localité.

Que ce soit d'un point de vue financier (intérêt de l'opérateur) ou socioéconomique (intérêt général), la présence d'activités productives est une condition sine qua none pour la réussite d'un programme d'électrification régionale. En effet, un abonné rural consomme en moyenne 150 kWh/an, contre une consommation oscillant entre 600 et 900 kWh/an/abonné dans les exploitations de la JIRAMA. Or, l'étude signale le faible développement des activités non agricoles dans les régions enquêtées. Les activités artisanales et industrielles sont rares et ne constituent une activité principale que pour 2% des villages visités. Au-delà des conséquences économiques, cette faiblesse aura un impact à la baisse sur la demande électrique latente de ces zones rurales, puisque les usages productifs de l'électricité seront très limités.

D'autre part, un abonné consommant 10 kWh/mois (uniquement quelques points d'éclairage) devra s'acquitter d'une facture mensuelle de l'ordre de 15.000 MGA/mois, ce qui pour un ménage dit "pauvre" peut représenter jusqu'à 40% de ses revenus mensuels sachant que ses besoins courants (alimentation, santé, éducation...) représentent déjà 80 à 90% de ses revenus. A ces coûts s'ajoutent les coûts de branchement (environ 24.000 MGA/abonné), la surtaxe communale (environ 500 MGA/mois qui finance, entre autres, l'éclairage public), la taxe FNE (1,25% de la consommation pour les consommations d'au moins 20 kWh/an) et la TVA (20% du coût de la consommation lorsque cette dernière est supérieure à 80 kWh/an). La tarification actuelle ne permet donc qu'à une frange limitée de la population de souscrire un abonnement auprès de l'opérateur (taux de raccordement inférieurs à 15%), ce dernier n'ayant par conséquence aucune garantie quant à la viabilité financière de son activité à court ou moyen terme.

Pour ce qui est de la promotion d'Activités Génératrices de Revenus (AGR) pouvant bénéficier de l'utilisation de l'électricité, l'étude de l'ADER distingue principalement deux catégories :

- Les AGR existantes, pour lesquelles il est proposé de distinguer deux sous-groupes de potentiels d'usages productifs de l'électricité :
 - O Un potentiel de conversion à l'électricité par substitution d'autres sources d'énergie ;
 - Un potentiel de conversions ou modernisations, l'expérience montrant qu'elles ne sont pas automatiques avec l'arrivée de l'électricité, notamment en raison des coûts supplémentaires liés à l'acquisition d'équipements électriques.
- Les AGR à créer, dans le cas desquelles, on évoquera un potentiel d'innovation.

L'analyse de la demande a été réalisée à l'aide du Module « *Demand Analyst* » du logiciel GEOSIM, en faisant l'hypothèse que les mesures d'accompagnement qui seront mises en œuvre permettront l'augmentation du nombre de raccordements en 1ère année (avec une évolution significative les années suivantes) et l'émergence d'activités productives.

En partant des profils de consommation moyens des différents types d'utilisateurs finaux (classes de ménages, structures sociales, activités productives etc.), le logiciel renseigne les indicateurs suivants :

- Nombre de clients (basse et moyenne tension).
- Demande de pointe (kW);
- Consommation annuelle (kWh);
- Courbes de demande classées (monotones).

Les différents usages de l'énergie dans les localités visées sont estimées en tenant compte des besoins exprimés par les populations cibles mais également des évolutions probables du comportement des consommateurs une fois que l'électricité sera disponible. Les indicateurs retenus sont les suivants :

- Nombre de points d'éclairage ;
- Nombre total d'heures d'éclairage et répartition journalière ;
- Niveau de diffusion des appareils électriques ;
- Régime d'utilisation de ces appareils électriques ;
- Catégories d'activités professionnelles utilisant l'énergie et leurs niveaux de consommation.

Les ménages sont divisés en 3 classes en fonction des revenus. La répartition de la population par classe est supposée évoluer au fil du temps sous-entendant que l'arrivée de l'électricité aura contribué à cette évolution : la classe aux revenus les plus faibles (dite « pauvre ») qui représente 72% de la population ne représente plus que 51% de la population à l'horizon de l'étude, tandis que la classe dite des ménages « aisés » passe de 3% à 14% de la population sur la même période. Toujours sur cette même période, la population des ménages à revenus intermédiaires passe d'une part de 25% de la population à une part de 35%.

Les estimations de consommation en première année suivant la mise en route du système d'approvisionnement sont de 84 kWh pour les ménages « pauvres », 168 kWh pour les ménages à revenus moyens et de 708 kWh/an pour les ménages « aisés ». Ces valeurs sont dans les ordres de grandeur ce qui peut être observé en milieu rural dans d'autres pays, dans des contextes où les tarifs permettent à une frange beaucoup plus importante de la population

de souscrire un abonnement, et où les mesures mises en place permettent aux ménages plus aisés de diversifier leurs équipements électriques.

Concernant les infrastructures et services rencontrés en milieu rural, les activités les plus couramment prises en compte pour estimer la demande en électricité au niveau des infrastructures et services en milieu rural sont les suivantes :

- Bâtiments administratifs, Eclairage public, Pompage de l'eau courante ;
- Ecoles, Collèges d'enseignement généraux (CEG), Centres de santé ;
- Décortiqueuses, Ateliers mécaniques, Scieries et menuiseries,
- Hotely, Lieux de culte...

La consommation de ces différentes activités est estimée :

- On compte par exemple pour le pompage de l'eau courante et l'éclairage public, environ de 750 W et 233 kWh par tranche de 1000 habitants ;
- Pour les autres activités, les estimations de consommation sont réalisées à partir des gammes de puissance relevées sur la base des heures de fonctionnement généralement observées en milieu rural.

Concernant la demande industrielle, son analyse doit être la plus fine possible. Si cette demande ne doit pas être surestimée, et donner lieu à la réalisation de centres de production surdimensionnés, il est indispensable d'en avoir une bonne image globale. Ceci est d'autant plus vrai en milieu rural où la consommation potentielle des localités, généralement de petite taille, peine souvent à justifier la mobilisation d'investissements pour leur approvisionnement.

Parmi les unités industrielles existantes, certaines sont actuellement raccordées au réseau, d'autres fonctionnent en mode autonome et pourraient à l'avenir être intégrées au sein de grappes électriques (population de la zone de couverture voyant la ligne passer à proximité). Le caractère saisonnier de ces activités est aussi à prendre en compte lors de l'estimation de la demande.

MdE-ORE-ADER-JIRAMA Page 100 sur 134

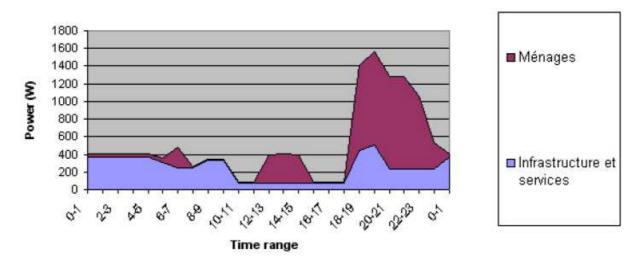


Figure 10-2 : Courbe de charge – année 1 – d'un village de 500 hab. (Source ADER/IED)

La prévision de la demande qu'à l'horizon de l'étude est construite à partir d'hypothèses d'évolution de la consommation des abonnés et des taux de raccordement :

- Concernant les ménages :
 - a. 50% sont raccordés en 1^{ère} année puis 80% après 10 ans (sous réserve de subvention de raccordement et de tarifs acceptables);
 - b. Leur consommation augmentera en moyenne de 4% sur les 10 premières années, puis se stabilisera à 2% ;
- Concernant les infrastructures et services :
 - a. 80% sont raccordés en 1ère année puis 100% après 10 ans ;
 - b. Leur consommation augmentera en moyenne de 4% sur les 10 premières années, de 6% les années suivantes.

Pour chacune des trois régions, les résultats de la prévision de la demande électrique sont fournis pour chaque Fokontany sur les années repère 2010, 2020 et 2030, avec précision de la part de la consommation domestique.

MdE-ORE-ADER-JIRAMA Page 101 sur 134

10.3 Etablissement des plans directeurs pour l'électrification rurale au niveau régional

Les plans d'électrification des 3 régions (BOENY, SAVA, et SOFIA) ont été développés avec

le double objectif (i) d'identifier des projets dont la mise en œuvre aura un impact maximal

sur le développement socioéconomique local, et (ii) de promouvoir les technologies

permettant de réduire la dépendance aux énergies fossiles, en privilégiant le recours aux

énergies renouvelables (hydroélectricité, biomasse, puis éolien et solaire). L'étude a été

réalisée dans un souci de réplicabilité.

La grande majorité des centres secondaires et ruraux à ce jour électrifiés est alimentée

par des centrales thermiques diesel. Les coûts d'approvisionnement en combustible,

d'autant plus élevés dans un contexte insulaire, sont le principal frein au développement de

l'accès au service électrique, tant en milieu rural qu'en milieu urbain. De ce fait :

- La planification des investissements mise en œuvre par la société nationale

d'électricité (JIRAMA) repose essentiellement sur le renforcement de sites de

production existants et la densification des réseaux de distribution associés ;

- Les opérateurs d'électrification rurale qui ont émergé grâce aux programmes menés

par l'ADER depuis sa création pratiquent des tarifs inaccessibles pour une bonne

partie de la population des localités électrifiées.

L'électricité reste donc actuellement l'apanage des populations aisées des centres les

plus urbanisés et des villages bénéficiaires d'un projet d'électrification rurale.

Les plans d'électrification développés dans les trois régions reposent sur des modèles

technico-économiques permettant par anticipation de garantir la viabilité des projets sur le

long terme.

MdE-ORE-ADER-JIRAMA

Page 102 sur 134

La promotion des énergies renouvelables est une priorité nationale. Dans cette perspective, et avec la double ambition d'encourager les investissements privés dans le secteur énergétique et de mettre à disposition de la population une électricité à moindre coût via les énergies renouvelables en substitution aux centrales thermiques (actuellement, 29% seulement de la production électrique provient des centrales hydrauliques, contre 71% pour les centrales thermiques), le gouvernement malgache a récemment accordé une exonération de taxes sur les équipements d'installation de centrales électriques fonctionnant à partir d'énergie renouvelable. Cette mesure concerne entre autres les turbines hydrauliques et les panneaux solaires photovoltaïques.

L'approvisionnement des Pôles de développement est donc une priorité.

L'optimisation économique de l'alimentation d'un Pôle peut conduire à la construction d'une grappe permettant de réduire le coût de revient actualisé du kWh via le raccordement de localités voisines de ce Pôle. Dans une logique de réduction des déséquilibres en matière d'accès au service électrique, des solutions sont également proposées pour les localités les plus isolées, à travers l'électrification des structures sociales (écoles et centres de santé) par systèmes photovoltaïques communautaires.

Un ordre de priorité a été défini quant aux technologies à considérer dans la définition des schémas d'approvisionnement, suivant leur capacité à satisfaire les besoins en électricité du plus grand nombre dans des conditions d'exploitation respectueuses de l'environnement. Cependant, par rapport à la vision initiale qui donnait la priorité au développement de l'hydroélectricité, trois principaux éléments d'analyse ont imposé d'en nuancer le caractère systématique :

- Les niveaux trop importants des investissements requis ;
- Les besoins de placement des surplus d'énergie : la majeure partie de l'énergie excédentaire doit pouvoir être injectée sur le réseau existant le plus proche ;
- La concurrence entre les sites de production : on recense parfois plusieurs sites hydrauliques peu distants les uns des autres ; une concurrence naturelle apparaît donc au moment de simuler leur développement.

MdE-ORE-ADER-JIRAMA Page 103 sur 134

Les tableaux ci-dessous listent les principaux indicateurs relatifs aux projets identifiés dans chacune des trois régions.

Figure 10-3 : Synthèse des projets - région BOENY (Source ADER/IED)

	BIOMASSE	DIESEL	SOLAIRE	TOTAL
Projets identifiés	6	17	102 écoles prim./ 25 structures sanit.	150
Localités / Pôles couverts	23 / 15	45 / 19 98		166 / 34
Population couverte (chiffre 2010)	49 000	72 000	125 000	246 000
Coût actualisé du kWh min. (Ar)	649,34 (26 cts €)			
Coût actualisé du kWh max. (Ar)	904,21 (36 cts €)			
Total investissements initiaux (Md Ar)	16 (6,4 M€)	10,7 (4,3 M€)	0,5 (0,2 M€)	27,2 (10,9 M€)

Figure 10-4 : Synthèse des projets - région SAVA (Source ADER/IED)

	HYDRO	DIESEL	SOLAIRE	TOTAL	
Projets identifiés	6	13	209 écoles primaires / 31 structures sanitaires	259	
Localités / Pôles couverts	110 / 41	53 / 19	162	325 / 60	
Population couverte (chiffre 2010)	133 000	105 000	206 000	444 000	
Coût actualisé du kWh min. (Ar)	170,72 (7 cts €)				
Coût actualisé du kWh max. (Ar)	230,58 (9 cts €)				
Total investissements initiaux (Md Ar)	32,4 (13 M€)	12,8 (5,1 M€)	0,9 (0,4 M€)	46,1 (18,4 M€)	

MdE-ORE-ADER-JIRAMA Page 104 sur 134

Figure 10-5 : Synthèse des projets - région SOFIA (Source ADER/IED)

	HYDRO	BIOMASSE	DIESEL	SOLAIRE	TOTAL
Projets identifiés	2	11	47	328 écoles prim./ 39 structures sanit.	427
Localités / Pôles couverts	20 / 14	40 / 17	93 / 66	266	419 / 97
Population couverte (chiffre 2010)	21 000	52 000	150 000	234 000	457 000
Coût actualisé du kWh min. (Ar)	86,57 (3,5 cts €)	735,74 (29 cts €)			
Coût actualisé du kWh max. (Ar)	137,65 (9 cts €)	889,16 (36 cts €)			
Total investissements initiaux (Md Ar)	6,55 (2,6 M€)	16,6 (6,6 M€)	20,4 (8,2 M€)	1,4 (0,56 M€)	45 (18 M€)

A ce stade, il faudra étudier plus avant les projets identifiés au sein de ces régions de façon à définir plus précisément les *business plans* associés aux projets d'électrification. Ensuite, la recherche de financement puis l'obtention du bouclage financier permettra de mettre en œuvre les projets d'électrification.

MdE-ORE-ADER-JIRAMA Page 105 sur 134

11 Recommandations pour la conception du Système Relationnel de Planification

Liminaire

Au regard des problèmes de circulation d'informations rencontrés par les différents acteurs du secteur de l'électricité, lors de l'élaboration des plans de développement des systèmes électriques tant en milieu urbain que rural, une refonte du système d'information s'avère indispensable et primordiale (cf. Cahier des Spécifications Techniques en annexe 12.12). Certes, les informations existent, mais leur disponibilité, ou plutôt leur accessibilité, n'est pas toujours acquise. Parfois, certaines informations ne sont connues que par le service qui les a produites, et n'ont jamais été diffusées, alors qu'elles auraient pu servir à d'autres acteurs.

Le système relationnel de gestion des bases de données à mettre en place aura pour but d'instaurer une vision stratégique du développement du secteur de l'électricité à Madagascar, et servira :

- A aider la mise en place de base de données exhaustive intégrant les informations les plus complètes possibles concernant le secteur : sites d'énergies renouvelables existants et potentiels avec système d'information géographique à l'appui, installations électriques, statistiques d'exploitation, plans de développement d'électrification et toute autre donnée numérique utile ;
- De portail internet permettant d'accéder aisément à un inventaire complet de données relatives au secteur (publication, consultation, mise à jour, extraction, ...) nécessaire à l'élaboration des plans de développement.

L'objectif assigné dans le cadre du présent contrat est d'établir, en étroite collaboration avec le Ministère de l'Energie (MdE) et les organismes qui lui sont rattachés - en particulier l'Office de Régulation de l'Electricité (ORE), l'Agence de Développement de l'Electrification Rurale (ADER) et la société Jiro sy Rano Malagasy (JIRAMA) - des recommandations sur la conception du « Système Relationnel de Planification » (« SyReP ») afin que ce dernier réponde aux objectifs visés sur le plan structurel et organisationnel.

Conformément aux objectifs de l'étude, on présente ci-après le recueil des recommandations proposées par les membres du Collectif pour la mise en place du « SyReP ».

11.1 Disponibilité des moyens techniques

Pour que la mise en place du «SyReP» soit une réussite, il faudra veiller à ce que les principales parties prenantes (MdE, ORE, ADER, JIRAMA) soient dotées de moyens de communication modernes leur permettant de prendre efficacement part au développement du secteur de l'électricité : matériel informatique, database management system, GPS, accès internet, etc...

11.2 Utilité pour les acteurs clés du système

Le «SyReP» devra permettre aux acteurs (MdE, ORE, ADER, JIRAMA, dirigeants, politiciens, décideurs du secteur, bailleurs de fonds, investisseurs, concessionnaires et permissionnaires actuels ou futurs, techniciens et profanes au secteur, entreprises, citoyens) la réalisation des actions suivantes :

- Permettre au MdE, par sa Direction de la Planification, de jouer pleinement son rôle de maître d'ouvrage pour l'élaboration des orientations générales de la planification (regard sur les travaux menés par ses organismes rattachés, validation des planifications indicatives) afin que les décisions d'investissement pour le compte du secteur soient cohérentes avec les résultats des travaux de planification effectués par les organismes qui lui sont rattachés;
- Développer l'adhésion des principaux acteurs aux objectifs et résultats de la planification;
- Construire les conditions d'émergence des projets les plus économiques et éviter les remises en cause courantes des résultats de la planification ;
- Extraire des informations historiques pertinentes, à jour et fiables sur le secteur de l'électricité;
- Accéder aux principaux résultats des études de planification officielle du secteur ;

- Développer et améliorer la circulation des données et informations-clés de planification entre les principales parties prenantes (MdE, ORE, ADER, JIRAMA) et stimuler la contribution de chaque acteur du développement du secteur de l'électricité malgache;
- Garantir une planification exhaustive (zones électrifiées ou non, secteurs de la Production, du Transport et de la Distribution) ;
- Alimenter et enrichir les informations disponibles par des mises à jour régulières ;
- Développer l'intérêt pour une vision commune, claire et partagée de la planification du secteur de d'électricité convergeant vers la satisfaction des besoins des populations ;
- Permettre aux dirigeants d'encore mieux asseoir leurs visions sur le secteur de l'électricité (la planification doit être un outil de décision, d'orientation, de suivi et de contrôle de l'efficacité).

11.3 Base de données

Les principales caractéristiques de la base de données devront être les suivantes :

- Système administré et doté de « ressources » propres (indépendant ?) et appropriées (matériels, logiciels, personnel, données et procédures) ;
- Système dimensionné au volume d'informations de planification traitées ;
- Architecture technique permettant d'assurer un dialogue avec l'utilisateur, traiter l'information, accéder aux données ;
- Base de données structurée :
- Non redondance des données ;
- Cohérence (voire unicité), validité et qualité des données ;
- Recours à des formats et à des langages communs pour renseigner et présenter les données :
- Aspect « relationnel » permettant de faciliter l'échange de flux d'informations entre les entités ;

MdE-ORE-ADER-JIRAMA Page 108 sur 134

- Utilisation des NTIC associée entre autres, à l'inventaire des besoins en info/données de chaque acteur, à la formulation des « produits finis », à la définition des rôles de chaque acteur;
- Mise à disposition de données/informations propres à chacune des principales parties prenantes ou communes au Secteur, et pouvant être utiles à la compréhension ou à la planification;
- Rappel des réglementations, méthodologies, procédures et règles de gestion respectées par les acteurs du secteur et répondant aux besoins de la population (donc du consommateur) malgache.

11.4 Droits d'accès

Les droits d'accès seront déterminés sur tout ou partie des données disponibles (lecture, ajout, mise à jour, suppression) sur la base des fonctions des acteurs au sein des différentes organisations.

On veillera à respecter au mieux les principes suivants :

- Contrôle d'accès aux données (compte utilisateur, accès aux objets de la base de données);
- Respect du droit de propriété des entités ayant fourni les données (fournisseurs d'information sur le système électrique malgache);
- Echange d'information fondé sur le respect de règles définies ;
- Données régies des lois/règles imposant des contraintes d'intégrité.

11.5 Conditions de succès

Pour se transformer en réussite pour l'ensemble du secteur de l'électricité à Madagascar, le « SyReP » devra veiller à atteindre les objectifs suivants :

- Outil souple (permettant d'intégrer l'évolution des NTIC), simple (permettant une manipulation facile pour les mises à jour, extractions, ajouts,...), efficace (rapidité de

traitement, capacité de stockage, protection des informations/données,..), attrayant et attractif (convivialité,...);

- Implication effective de chaque acteur du secteur Electricité pour la pérennisation de l'outil ;
- Système interactif où chacun se sent responsable de ses actions (ou inactions) en vue du développement du secteur de l'électricité.

11.6 Mise en œuvre

Dans un souci d'efficacité, le système envisagé devra faire l'objet d'un accompagnement afin d'être rodé manuellement avant de procéder à son informatisation : état des lieux et analyse de l'existant, proposition d'une réorganisation des processus existants si nécessaire.

Il ne s'agira pas d'intégrer « SyReP » dans un système informatique préexistant, mais de mettre en place et en œuvre un système informatique dédié et adapté.

Les principales parties prenantes (MdE, ORE, ADER, JIRAMA) joueront un rôle important dans le montage et l'appropriation du « SyReP ». Une culture de « concertation » devra être cultivée et entretenue entre ces entités afin de converger en permanence vers les intérêts partagés (cf. supra, « Utilité pour les acteurs clés du système »).

Une analyse du fonctionnement du système et du maintien des compétences (formation) des planificateurs (conseillers en énergie) sera instaurée dans un souci d'amélioration continue.

La bonne volonté de chacun des acteurs sera à maintenir/motiver pour faire aboutir le projet.

Le partage par l'ensemble du « Collectif SyReP » de tous les éléments/informations relatifs à la planification (TDR, contrat, résultats d'études, rapports...) sera primordial.

Concertation et réunion d'échange des planificateurs, de même que contribution et participation « équitable » des différents acteurs seront gages de l'efficacité du processus de planification dont les principaux objectifs visés peuvent être synthétisés comme suit : amélioration du système de planification du secteur de l'électricité, pédagogie sur les questions clés du secteur de l'électricité (économie, développement), renforcement de l'acceptabilité des décisions.

PROJET DE REDRESSEMENT ET DE RESTRUCTURATION DU SECTEUR DE L'ELECTRICITE
Plans de Développement des Systèmes Electriques de 3 réseaux d'exploitation de la JIRAMA et de 3 régions pour l'Electrification Rurale
Rapport Définitif – Juin 2013

12 Annexes

MdE-ORE-ADER-JIRAMA Page 111 sur 134

12.1 Prévision de la demande du RIA (détail du Scénario Probable)

	2012	2013	2014	2015	2016	2017	2018	2019	2020	2025	2030	2030 TCAM 00-12 TCAM 12-30	TCAM 12-30
INDICATEURS ECONOMIQUES CROISSANCE PIB PIB SECT PRIM (Milliards AR84) PIB SECT SECO (Milliards AR84) PIB SECT TERT (Milliards AR84) PIB SECT TERT (Milliards AR84)	1,9% 189 72 308 569	2,8% 191 75 319 585	3,3% 194 79 332 604	3,9% 198 83 347 628	4,5% 204 88 364 656	5,0% 211 94 383 689	5,0% 218 101 404 724	5,0% 226 108 425 760	5,0% 234 116 448 798	5,0% 278 167 575 1020	5,0% 330 243 730 1303	2,0% 2,0% 2,6% 1,7%	3,2% 7,0% 4,9% 4,7%
DONNEES DEMOGRAPHIQUES ET NOMBRE D'ABONNES POP Malgache 21 308 700 2 1 917 11 POP TOTALE RI ANTANANARIVO 5 296 000 5 447 21 POP ZONE ELECTRIFIEE 2 843 000 2 943 33 Taux d'acces 53.7% 54,0 Nombre de personne par ménage 2 4,3% 24,3% Nombre clients résidentiels 5 Taux de desserte 44,3% 264 33	BRE D'ARONNES 21 308 700 2 1917 100 5 296 000 5 447 200 2 843 000 2 943 300 53,7% 54,0% 24,3% 24,3% 5 257 300 264 300 45,3% 44,9%	00 00 00 8 00 00 00	22 543 000 23 186 600 5 602 800 5 762 700 3 047 000 3 154 200 54,4% 54,7% 24,6% 24,9% 5 5275 300 286 860 45,2% 45,5%		23 848 700 ; 5 927 300 3 265 100 25,2% 25,2% 5 298 980 45,8%	24529700 5 6 096500 3 379700 55,4% 25,6% 5 311 660 46,1%	25 230 100 5 6 270 600 3 498 300 55,8% 25,9% 5 324 900 46,4%	25 950 500 ; 6 449 700 3 620 800 56.1% 26.3% 5 338 700 46,8%	26 691 500 6 633 800 3 747 400 56,5% 26,6% 5 353 100 47,1%	23 848 700 24 529 700 25 230 100 25 950 500 26 691 500 30 726 100 35 370 600 5 927 300 6 096 500 6 270 600 6 449 700 6 6 33 800 7 636 600 8 790 900 3 265 100 3 379 700 3 498 300 3 620 800 3 747 400 4 447 900 5274 600 55,1% 55,4% 56,1% 56,1% 56,5% 58,2% 60% 25,2% 25,8% 26,3% 26,6% 28,4% 30% 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	35370 600 8790 900 5274 600 60% 30% 527 500 50%	2,9% 2,9% 2,8% 0,0% 3,5%	2,9% 2,9% 3,5% 0,0% 4,1%
CONSOMMATION SPECIFIQUE DES CLIENTS RESIDI Consommation annuelle par client rés. (kWh) 1279	ENTS RES 1279	IDENTIELS 1279	1280	1281	1292	1304	1316	1327	1339	1375	1408	1,4%	0,5%
REPARTITION DES VENTES (MWh) Industriel MT/HT Autres MT Résidentiels BT PME/SERVICES BT Eclairage public TOTAL DES VENTES	137690 128963 329087 33229 4732 633701	143583 133515 338040 34402 4921 654462	150705 138853 352384 35778 5118 682837	159205 145052 367405 37375 5323 714360	169267 152207 386402 39219 5536 752630	181115 160426 406410 41336 5757 795046	193933 169023 427451 43551 5987 839945	207806 178008 449542 45866 6227 887450	222832 187394 472758 48285 6476 937745	319332 240719 595890 62025 7879 1225845	465870 305441 742926 78702 9586 1602525	0,1% 3,2% 5,0% 2,8% -0,4% 3,2%	7,0% 4,9% 4,6% 4,9% 4,0% 5,3%
REPARTITION DE LA PRODUCTION (MWh) Rendement brut (Pbrute à Ventes) PRODUCTION BRUTE (PB) 9	(Wh) 67,3% 941384	67,3% 972225	68,4% 998101	69,5% 1027688	70,6% 1065910	71,7%	72,8% 1153698	73,9% 1200843	75,0% 1250327	77,5%	80% 2003156	4,4%	4,3%
REPARTITION DE LA PUISSANCE DE POINTE (kW) FC Global Pointe Globale 188080	OINTE (KV 57,1% 188080	V) 56,5% 196433	56,7% 200929	56,9% 206137	57,1% 213033	57,3% 220798	57,5% 228928	57,7% 237433	57,9% 246338	59,0% 306192	60% 381118	4,4%	4,0%

12.2 Prévision de la demande du RIA (détail du Scénario Volontariste)

	2012	2013	2014	2015	2016	2017	2018	2019	2020	2025	2030	TCAM 12-30	TCAM 12-30
INDICATEURS ECONOMIQUES													(Probable)
CROISSANCE PIB	1,9%	2,8%	3,3%	3,9%	4,5%	2,0%	5,4%	5,8%	6,2%	7,1%	7,1%		
PIB SECT PRIM	189	191	194	198	204	211	220	231	244	340	476	2,3%	3,2%
PIB SECT SECO	72	75	62	83	88	94	102	111	121	202	341	%0′6	2,0%
PIB SECT TERT	308	319	332	347	364	383	405	427	452	602	793	5,4%	4,9%
PIB TOTAL	269	282	604	628	929	689	726	692	817	1144	1610	2,9%	4,7%
DONNEES DEMOGRAPHIQUES ET NOMBRE D'ABONN	BRE D'AB	ONNES											
POP Malgache	21 308 700	8 000	22 606 400	23 284 600	23 983 100 3	24 702 600 3	25 443 700	26 207 000	26 993 200	23 284 600 23 983 100 24 702 600 25 443 700 26 207 000 26 993 200 31 292 500 36 276 600	36 276 600	3,0%	2,9%
POP TOTALE	5 296 000	5 454 900	5 618 500	5 787 100	5 960 700	6 139 500	6 323 700	6513400	6 708 800	7 777 300	9 016 000	3,0%	2,9%
POP ZONE ELECTRIFIEE	2 843 000	2 947 400	3 055 600	3167600	3 283 500	3 403 600	3 527 900	3 656 600	3 789 800	4 529 900	5 409 600	3,6%	3,5%
Taux de couverture	53,7%	54,0%	54,4%	54,7%	55,1%	55,4%	55,8%	56,1%	56,5%	58,2%	%09		
Taux d'acces	24,3%	24,2%	24,5%	24,8%	25,1%	25,4%	25,7%	26,1%	26,4%	28,1%	30%		
Nombre de personne par ménage	S	S	2	2	5	S	S	2	5	S	5	%0′0	%0′0
Nbre clients résidentiels	257 300	264 300	275 300	286 925	299 175	312 050	325 550	339 675	354 425	437 550	536300	4,2%	4,1%
Taux de desserte	45,3%	44,8%	45,0%	45,3%	45,6%	45,8%	46,1%	46,4%	46,8%	48,3%	20%		
CONSOMMATION SPECIFIQUE DES CLIENTS RESIDEN	ENTS RES	IDENTIELS											
Consommation annuelle par abonné Rés. (kW	1279	1279	1280	1281	1292	1303	1313	1324	1335	1366	1393	%5'0	0,5%
REPARTITION DES VENTES (MWh)													
Industriel MT/HT	137690	143583	150705	159205	169267	181115	195242	212033	231964	388026	653897	%0′6	2,0%
Autres MT	128963	133515	138853	145052	152207	160426	169282	178829	189130	252048	331558	5,4%	4,9%
Résidentiels BT	329087	338040	352384	367488	386428	406448	427569	449811	473194	597621	747010	4,7%	4,6%
PME/SERVICES BT	33229	34402	35778	37375	39219	41336	43618	46078	48732	64944	85431	5,4%	4,9%
Eclairage public	4732	4921	5118	5323	5536	5757	2887	6227	6476	7879	9856	4,0%	4,0%
TOTAL DES VENTES	633701	654462	682837	714443	752656	795083	841699	892978	949496	1310548	1827483	6,1%	5,3%
REPARTITION DE LA PRODUCTION (MWh)	(Wh)												
Rendement brut (Pbrute à Ventes)	67,3%	67,3%	68,4%	69,5%	70,6%	71,7%	72,8%	73,9%	75,0%	77,5%	%08		
PRODUCTION BRUTE (PB)	941384	972225	998101	1027808	1065948	1108797	1156107	1208323	1265995	1691029	2284353	2,0%	4,3%
REPARTITION DE LA PUISSANCE DE POINTE (KW)	OINTE (KV	(v											
FC Global Pointe Globale	57,1%	56,5%	56,7%	56,9%	57,1%	57,3%	57,5%	57,7%	57,9%	59,0%	60%	4 8%	4 0%
	20000	2010/1	110001	101001	0.00	20001		1	211711		070707	0/0/1	1,070

12.3 Scénarios Volontaristes pour les autres exploitations de la JIRAMA

12.3.1 RI Toamasina

RITOAMASINA	2013	2014	2015	2016	2017	2018	2019	2020	2025	2030	TCAM
VENTES (MWh)	69 436	72 515	75 926	79 694	83 845	88 363	93 279	98 628	130 927	174 781	5,6%
HT/MT	21 374	22 304	23 397	24 672	26 153	27 823	29 709	31 843	46 760	69 369	7,2%
- Industriel MT/HT	7867	8257	8723	9274	9923	10697	11617	12709	21261	35826	9,3%
- Autres MT	13507	14047	14674	15398	16230	17126	18092	19134	25499	33543	5,5%
BASSE TENSION	48 062	50 211	52 529	55 022	57 692	60 540	63 570	66 785	84 167	105 412	4,7%
RESIDENTIEL	46 384	48 465	50 709	53 118	55 696	58 446	61 370	64 473	81 183	101 589	4,7%
PME/PMI	1 036	1 077	1 125	1 181	1 244	1 313	1 387	1 467	1 955	2 572	5,5%
ECLAIRAGE PUBLIC	643	668	695	723	752	782	813	846	1 029	1 252	4,0%
PRODUCTION	2013	2014	2015	2016	2017	2018	2019	2020	2025	2030	
PRODUCTION BRUTE (MWh)	105 500	108 798	112 508	116 649	121 244	126 255	131 708	137 640	172 662	218 477	4,4%
POINTE (kW)	23 354	23 855	24 436	25 098	25 845	26 667	27 565	28 547	34 267	41 567	3,4%
Rendement global	65,8%	66,7%	67,5%	68,3%	69,2%	70,0%	70,8%	71,7%	75,8%	80,0%	1,2%
Facteur de charge	51,6%	52,1%	52,6%	53,1%	53,6%	54,0%	54,5%	55,0%	57,5%	60,0%	0,9%

12.3.2 Exploitation d'Ambositra

AMBOSITRA	2013	2014	2015	2016	2017	2018	2019	2020	2025	2030	TCAM
VENTES (MWh)	3 077	3 241	3 428	3 640	3 878	4 143	4 435	4 756	6 411	8 528	6,2%
HT/MT	0	0	0	0	0	0	0	0	0	0	
- Industriel MT/HT	0	0	0	0	0	0	0	0	0	0	
- Autres MT	0	0	0	0	0	0	0	0	0	0	
BASSE TENSION	3 077	3 241	3 428	3 640	3 878	4 143	4 435	4 756	6 411	8 528	6,2%
RESIDENTIEL	2 694	2 843	3 012	3 204	3 420	3 660	3 925	4 218	5 701	7 601	6,3%
PME/PMI	339	352	368	386	407	429	454	480	639	841	5,5%
ECLAIRAGE PUBLIC	44	46	48	50	52	54	56	58	71	86	4,0%
PRODUCTION	2012	2014	2015	2016	2015	2010	2010	2020	2025	2020	
	2013	2014	2015	2016	2017	2018	2019			2030	F 40/
PRODUCTION BRUTE (MWh)	3 896	4 069	4 270		4 754		5 351				5,4%
POINTE (kW)	1 021	1 057	1 100	1 149	1 204	1 265	1 333	1 407	1 753	2 163	4,5%
Rendement global	79,0%	79,6%	80,3%	80,9%	81,6%	82,2%	82,9%	83,5%	86,8%	90,0%	0,8%
Facteur de charge	43,6%	43,9%	44,3%	44,7%	45,1%	45,5%	45,8%	46,2%	48,1%	50,0%	0,8%

12.3.3 Exploitation d'Antsiranana

ANTSIRANANA	2013	2014	2015	2016	2017	2018	2019	2020	2025	2030	TCAM
VENTES (MWh)	38 811	40 897	43 288	46 017	49 122	52 631	56 596	61 078	90 181	134 199	7,6%
HT/MT	22 195	23 234	24 465	25 913	27 609	29 584	31 885	34 566	54 698	87 642	8,4%
- Industriel MT/HT	15706	16485	17415	18516	19812	21357	23194	25374	42448	71528	9,3%
- Autres MT	6489	6749	7050	7398	7797	8227	8692	9192	12250	16115	5,5%
BASSE TENSION	16 616	17 663	18 823	20 104	21 514	23 047	24 711	26 512	35 482	46 557	6,2%
RESIDENTIEL	13 073	13 978	14 976	16 072	17 272	18 580	20 002	21 543	28 936	38 025	6,5%
PME/PMI	3 044	3 165	3 307	3 470	3 657	3 859	4 076	4 311	5 745	7 558	5,5%
ECLAIRAGE PUBLIC	500	520	541	562	585	608	633	658	801	974	4,0%
PRODUCTION	2013	2014	2015	2016	2017	2018	2019	2020	2025	2030	
PRODUCTION BRUTE (MWh)	47 535	49 789	52 387	55 361	58 749	62 578	66 902	71 783	103 012	149 110	7,0%
POINTE (kW)	9 980	10 390	10 866	11 414	12 041	12 750	13 551	14 455	20 155	28 369	6,3%
Rendement global	81,6%	82,1%	82,6%	83,1%	83,6%	84,1%	84,6%	85,1%	87,5%	90,0%	0,6%
Facteur de charge	54,4%	54,7%	55,0%	55,4%	55,7%	56,0%	56,4%	56,7%	58,3%	60,0%	0,6%

MdE-ORE-ADER-JIRAMA Page 114 sur 134

12.3.4 Exploitation d'Ambilobe

AMBILOBE	2013	2014	2015	2016	2017	2018	2019	2020	2025	2030	TCAM
VENTES (MWh)	2 788	2 926	3 077	3 244	3 426	3 624	3 837	4 066	5 227	6 680	5,3%
HT/MT	0	0	0	0	0	0	0	0	0	0	
- Industriel MT/HT	0	0	0	0	0	0	0	0	0	0	
- Autres MT	0	0	0	0	0	0	0	0	0	0	
BASSE TENSION	2 788	2 926	3 077	3 244	3 426	3 624	3 837	4 066	5 227	6 680	5,3%
RESIDENTIEL	2 114	2 224	2 344	2 475	2 616	2 769	2 934	3 112	3 959	5 013	5,2%
PME/PMI	658	684	715	750	790	834	881	932	1 242	1 634	5,5%
ECLAIRAGE PUBLIC	17	18	18	19	20	21	21	22	27	33	4,0%
PRODUCTION	2013	2014	2015	2016	2017	2018	2019	2020	2025	2030	
PRODUCTION BRUTE (MWh)	4 896	5 043	5 208	5 393	5 599	5 820	6 059	6 315	7 501	8 907	3,6%
POINTE (kW)	1 129	1 163	1 200	1 242	1 288	1 339	1 393	1 451	1 718	2 033	3,5%
Rendement global	57,0%	58,0%	59,1%	60,1%	61,2%	62,3%	63,3%	64,4%	69,7%	75,0%	1,6%
Facteur de charge	49,5%	49,5%	49,5%	49,6%	49,6%	49,6%	49,7%	49,7%	49,8%	50,0%	0,1%

12.3.5 Exploitation de Morondava

MORONDAVA	2013	2014	2015	2016	2017	2018	2019	2020	2025	2030	TCAM
VENTES (MWh)	5 964	6 162	6 398	6 673	6 992	7 350	7 750	8 196	11 152	15 368	5,7%
HT/MT	1 437	1 501	1 577	1 666	1 769	1 887	2 022	2 176	3 288	5 030	7,6%
- Industriel MT/HT	706	741	782	832	890	960	1042	1140	1907	3214	9,3%
- Autres MT	731	761	795	834	879	927	980	1036	1381	1816	5,5%
BASSE TENSION	4 527	4 660	4 820	5 008	5 223	5 463	5 728	6 019	7 864	10 338	5,0%
RESIDENTIEL	3 339	3 425	3 530	3 654	3 797	3 959	4 140	4 340	5 632	7 408	4,8%
PME/PMI	1 151	1 197	1 250	1 312	1 383	1 459	1 542	1 630	2 173	2 858	5,5%
ECLAIRAGE PUBLIC	37	39	40	42	43	45	47	49	59	72	4,0%
PRODUCTION	2013	2014	2015	2016	2017	2018	2019	2020	2025	2030	
PRODUCTION BRUTE (MWh)	8 234	8 421	8 655	8 939	9 275	9 655	10 082	10 560	13 717	18 080	4,7%
POINTE (kW)	1 964	1 991	2 029	2 077	2 137	2 206	2 285	2 373	2 960	3 753	3,9%
Rendement global	72,4%	73,2%	73,9%	74,7%	75,4%	76,1%	76,9%	77,6%	81,3%	85,0%	0,9%
Facteur de charge	47,9%	48,3%	48,7%	49,1%	49,5%	50,0%	50,4%	50,8%	52,9%	55,0%	0,8%

MdE-ORE-ADER-JIRAMA Page 115 sur 134

12.4 Modélisation des aménagements hydroélectriques

12.4.1 Définition des Conditions Hydrologiques communes à tous les aménagements

La pondération des Conditions Hydrologiques (CH) est obtenue en classant la somme des productions mensuelles des aménagements au fil de l'eau (AFL). Les aménagements à apports non disponibles sont exclus de cette somme pour ne pas déformer arbitrairement la statistique. Les CH1, 2 & 3 obtenues sont pondérés à 6, 16 et 5 vingt-septièmes. La même pondération est affectée aux CH des aménagements à apports non disponibles.

12.4.2 Précisions sur quelques hypothèses retenues pour les aménagements existants

a) Mandraka

Utilisée en base, cette centrale pourrait produire annuellement en moyenne 99 GWh compte tenu du temps de transfert depuis le réservoir de Mantasoa, cette centrale fonctionne environ 61% du temps, soit un productible de 61 MWh.

b) Manandona & Antelomita

2007, 2008 et 2009, années de productions maximales pour l'ensemble des aménagements (cf. historique de productions disponible) sont considérées comme années humides et la production moyenne de ces 3 années permet de caler les productibles respectifs des quantiles humides de ces centrales (5,2 GWh pour Manandona – 47,9 GWh pour Antelomita 1&2).

c) Andekaleka

ADK 2 groupes : même hypothèse que pour Manandona & Antelomita. Productible du quantile humide calée à la valeur moyenne des productions de 2007 à 2009, soit 485,4 GWh.

ADK 3 groupes : gain de 1% de rendement par rapport à ADK 2 groupes qui augmente la puissance disponible de 58 MW à 91 MW, avec un productible qui augmente à 537,6 GWh.

d) Sahanivotry

Productible calé sur la valeur contractuelle d'énergie à produire par l'IPP (80 GWh/an)

Plans de Développement des Systèmes Electriques de 3 réseaux d'exploitation de la JIRAMA et de 3 régions pour l'Electrification Rurale Rapport Définitif – Juin 2013

e) <u>Tsiazompaniry</u>

Productible calé sur la valeur contractuelle d'énergie à produire par l'IPP (20,8 GWh/an).

12.4.3 Précisions sur quelques hypothèses retenues pour les aménagements candidats

a) Antetezambato

Productible de 1290 GWh/an.

b) Mahavola

Productible de 1154 GWh/an.

c) <u>Lohavanana</u>

Productible de 915 GWh/an.

d) Sahofika

Productible de 852 GWh/an.

e) Ranomafana

Productible de 340 GWh/an. Utilisation des apports naturels de Mahavola, se trouvant sur la même rivière, et calage sur le productible de Ranomafana tel qu'estimé dans les études disponibles.

f) Volobe Amont

Productible de 270 GWh/an.

g) Andekaleka G4

Le passage à 4 groupes abaisse du rendement global de l'installation du fait de l'augmentation des pertes de charges hydrauliques par rapport à ADK 3 groupes ; la puissance disponible augmente de 27 MW ; le productible augmente de 76,3 GWh.

h) <u>Tsinjoarivo</u>

Productible de 120 GWh/an. Les apports ne sont disponibles que pour les années 1962 à 1988. Utilisation de la période commune avec les autres aménagements (de 1970 à 1988) en répartissant ces années sur les mêmes classes (CH1, 2 et 3) que les autres aménagements et en leur donnant le même poids.

i) Talaviana

Productible de 140 GWh/an. Utilisation des apports naturels de la Manandona, se trouvant sur la zone géographique la plus proche, et calage sur le productible de Talaviana tel qu'estimé dans les études disponibles.

j) Andranomamofona

Productible de 110 GWh/an. Utilisation des apports naturels utilisés par l'ORE dans les études de planification antérieures.

k) Mahitsy

Productible de 70 GWh/an. Utilisation des apports naturels de Mahavola, se trouvant sur la même rivière, et calage sur le productible de Mahitsy tel qu'estimé dans les études disponibles.

l) <u>Lily</u>

Productible de 24 GWh/an. Utilisation des apports naturels de Mahavola, le projet géographiquement le plus proche, et calage sur le productible de Lily tel qu'estimé dans les études disponibles.

m) <u>Tazonana</u>

Productible de 18 GWh/an. Utilisation des apports naturels de la Manandona, se trouvant sur la zone géographique la plus proche, et calage sur le productible de Tazonana tel qu'estimé dans les études disponibles.

12.5 Apports hydrologiques (centrales existantes et candidates)

12.5.1 Apports naturels de l'Ivohitra à Andekaleka (m3/s)

Année	Jan	Févr	Mars	Avr	Mai	Juin	Juil	Août	Sept	Oct	Nov	Déc	Moyenne
1. :	31	28	31	30	31	30	31	31	30	31	30	31	365
nb jours	31	20	31	30	31	30	31	31	30	31	30	31	303
1970	103,0	100,0	81,0	110,0	77,0	68,0	67,0	87,0	57,0	40,0	39,9	41,6	72,4
1971	175,0	160,0	89,3	65,3	58,4	46,3	65,0	55,9	48,4	36,2	48,3	62,1	75,4
1972	69,6	222,0	203,0	95,1	65,0	49,2	60,8	39,0	31,8	42,8	41,4	78,9	82,4
1973	249,0	262,0	229,0	121,0	75,8	73,9	62,9	70,5	49,7	38,0	28,1	33,6	107,0
1974	110,3	110,1	97,8	100,0	75,0	65,4	82,4	66,2	50,8	41,4	46,3	64,6	75,7
1975	63,1	83,7	197,4	98,4	68,0	64,2	49,3	59,0	44,1	35,2	48,1	98,4	75,8
1976	162,1	116,6	95,8	83,4	60,4	55,5	55,6	51,7	44,1	38,4	44,6	72,1	73,2
1977	91,6	312,4	121,0	83,4	54,8	50,1	47,7	51,4	45,5	35,4	35,5	40,6	79,2
1978	39,2	38,4	73,3	52,1	36,4	44,6	46,0	35,2	32,0	29,4	38,1	31,1	41,3
1979	33,9	72,2	43,3	35,0	28,0	24,6	36,3	35,7	25,0	22,7	24,3	47,2	35,5
1980	134,4	122,2	108,8	62,3	54,2	40,4	54,7	56,7	48,0	44,2	41,0	51,9	68,0
1981	39,6	48,4	79,2	71,5	39,4	33,7	26,8	28,6	25,8	25,7	22,6	460,6	75,8
1982	91,2	100,0	144,0	88,9	100,0	105,0	77,0	89,0	61,0	49,8	67,0	61,0	86,1
1983	18,7	58,0	79,0	66,0	44,8	57,0	51,0	72,0	67,0	64,0	44,7	64,0	57,2
1984	124,1	126,4	129,5	179,2	107,5	92,2	91,5	80,4	73,0	77,8	75,6	57,2	100,9
1985	73,9	283,5	201,2	153,9	94,5	81,2	91,3	98,3	93,0	75,8	68,2	138,9	120,1
1986	103,1	145,6	383,5	132,0	129,1	90,6	97,1	81,1	55,8	65,0	68,9	102,0	121,3
1987	179,9	177,8	131,4	104,4	85,8	73,2	53,4	53,1	42,4	37,4	38,8	32,9	83,7
1988	85,0	35,3	68,7	43,0	31,0	29,7	33,2	23,3	21,6	20,4	22,8	32,4	37,3
1989	44,5	80,5	73,5	40,2	46,3	31,9	35,4	46,1	38,8	28,7	29,7	73,8	47,3
1990	61,1	59,5	37,8	32,7	32,2	32,1	27,3	29,6	22,2	18,0	20,0	29,2	33,3
1991	34,0	59,0	50,8	75,0	41,6	33,8	33,2	28,7	25,3	24,3	22,3	27,0	37,7
1992	51,3	53,8	43,1	37,9	37,4	33,9	35,4	34,4	28,6	23,0	22,5	21,6	35,1
1993	26,9	34,5	56,8	40,1	31,1	29,5	42,3	36,2	30,7	27,0	26,8	22,0	33,7
1994	62,5	88,4	229,0	70,4	50,0	41,7	41,5	48,7	30,7	28,9	24,5	30,9	62,3
1995	62,1	182,5	48,1	42,2	42,9	36,6	35,0	43,7	29,5	23,5	19,0	34,0	49,1
1996	109,9	166,4	90,7	43,6	53,4	34,0	34,5	33,1	24,1	21,6	18,9	47,2	55,8
Min.	18,7	34,5	37,8	32,7	28,0	24,6	26,8	23,3	21,6	18,0	18,9	21,6	33,3
MOYENNE	88,8	122,2	118,0	78,8	60,0	52,5	53,1	53,1	42,4	37,6	38,1	68,8	67,5
Max.	249,0	312,4	383,5	179,2	129,1	105,0	97,1	98,3	93,0	77,8	75,6	460,6	121,3

MdE-ORE-ADER-JIRAMA Page 119 sur 134

12.5.2 Apports naturels de l'Ikopa à Antelomita (m3/s)

Année	Jan	Févr	Mars	Avr	Mai	Juin	Juil	Août	Sept	Oct	Nov	Déc	Moyenne
nb jours	31	28	31	30	31	30	31	31	30	31	30	31	365
no jours	31	20	31	30	31	30	31	31	30	31	30	31	303
1970	58,6	32,9	22,4	21,7	16,1	16,0	13,6	15,2	9,8	10,7	15,3	16,4	20,7
1971	56,6	72,9	37,4	20,1	16,8	14,0	15,1	14,3	13,6	10,4	11,2	39,1	26,6
1972	23,6	79,5	67,4	33,5	23,8	17,6	19,0	16,2	11,0	14,2	26,5	21,1	29,1
1973	65,2	81,8	86,0	35,1	22,4	23,1	18,7	18,7	12,4	10,4	9,4	17,7	33,2
1974	27,7	34,7	28,3	29,0	19,3	16,3	15,2	12,7	10,8	10,3	14,8	34,6	21,1
1975	35,9	58,9	85,9	32,4	23,2	19,3	17,0	17,2	13,2	11,1	28,5	40,2	31,8
1976	55,6	46,7	27,4	27,7	17,7	15,4	15,9	13,4	9,9	11,3	12,2	43,2	24,6
1977	46,8	122,0	86,6	39,5	27,0	22,7	19,8	18,9	14,2	12,3	9,7	18,8	36,0
1978	14,3	15,8	25,5	13,9	7,6	9,5	11,8	6,6	5,7	6,4	9,5	10,5	11,4
1979	12,5	33,1	14,0	13,8	8,3	6,8	9,2	10,2	3,7	3,7	17,2	24,5	12,9
1980	45,7	30,9	34,6	16,4	13,5	10,5	13,6	14,8	9,9	11,9	12,1	16,7	19,2
1981	12,6	21,7	49,2	23,1	14,9	12,2	9,0	9,0	8,4	16,2	7,1	26,0	17,5
1982	98,5	101,7	122,0	45,2	26,3	23,0	22,0	19,1	16,6	14,3	20,1	19,9	43,8
1983	28,0	25,7	17,4	12,8	11,9	10,2	12,2	8,7	7,4	8,0	10,7	63,4	18,1
1984	69,3	71,1	48,0	32,4	21,8	20,2	19,6	17,6	11,5	11,2	30,7	14,6	30,4
1985	18,1	52,9	45,1	24,2	16,2	14,9	14,5	15,9	14,4	13,0	12,5	35,9	23,0
1986	22,0	45,3	65,1	25,4	21,1	15,5	14,8	13,1	9,4	22,3	19,3	33,2	25,5
1987	82,7	55,1	38,9	24,7	17,7	13,6	13,3	15,6	10,1	11,3	8,3	9,9	25,0
1988	40,8	36,9	26,8	18,2	13,0	6,6	13,4	10,8	8,3	5,8	12,3	21,9	17,8
1989	37,3	46,6	28,5	14,2	13,7	10,9	11,6	18,0	12,5	6,8	15,4	42,1	21,4
1990	28,5	30,1	20,3	16,5	11,6	10,8	8.8	9,1	7,6	7,8	12,0	16,8	14,9
1991	11,7	18,6	23,3	24,5	9,3	9,2	8,6	6,7	4,6	5,1	12,1	11,8	12,1
1992	40,4	25,8	26,5	17,7	11,2	8,7	9,4	10,2	7.7	8,4	15,2	4,7	15,4
1993	13,2	40,0	35,0	16,1	10,7	12,9	6,4	9,7	8,5	9,4	13,7	20,1	16,2
1994	54,5	118,4	70,9	38,2	22,9	19,6	18,3	17,9	12,5	11,7	14,5	16,7	34,1
1995	54,1	68,9	22,8	21,8	16,6	12,4	10,7	12,7	10,5	10,1	13,9	35,4	23,9
1996	76,4	99,3	65,7	28,6	21,0	17,1	15,4	13,6	10,0	8,9	15,0	38,5	33,8
Min.	11,7	15.8	14,0	12,8	7,6	6,6	6,4	6,6	3.7	3,7	7.1	4,7	11,4
MOYENNE	41,9	54,4	45,2	24,7	16,9	14,4	14,0	13,6	10,2	10,5	14,8	25,7	23,7
Max.	98,5	122,0	122,0	45,2	27,0	23,1	22,0	19,1	16,6	22,3	30,7	63,4	43,8

MdE-ORE-ADER-JIRAMA Page 120 sur 134

12.5.3 Apports naturels de la Mandraka à Mantasoa (m3/s)

Année	Jan	Févr	Mars	Avr	Mai	Juin	Juil	Août	Sept	Oct	Nov	Déc	Moyenne
1 .	31	28	31	30	31	30	31	31	30	31	30	31	365
nb jours	31	28	31	30	31	30	31	31	30	31	30	31	303
1970	8,3	4,8	2,3	2,2	1,6	1,6	1,7	2,4	1,3	0,7	1,2	3,5	2,6
1971	3,8	12,9	6,5	2,2	1,8	1,4	2,2	1,4	1,4	0,4	2,3	5,2	3,4
1972	3,9	14,0	13,3	3,4	1,3	1,1	1,8	1,1	0,5	2,0	2,1	2,8	3,9
1973	12,0	15,0	12,3	3,2	1,2	2,3	1,8	1,7	1,0	0,7	0,7	2,4	4,5
1974	4,0	5,9	5,5	4,0	2,0	2,0	3,0	1,5	1,4	1,3	2,0	7,1	3,3
1975	7,5	9,6	19,6	2,6	1,8	1,7	1,3	1,9	1,4	1,2	5,2	8,0	5,1
1976	12,4	10,5	5,4	4,1	1,9	1,5	2,1	1,6	1,1	1,5	1,5	6,4	4,1
1977	6,6	20,1	10,8	3,0	1,9	1,5	1,6	2,1	1,2	1,5	1,5	2,3	4,4
1978	2,7	2,7	4,7	1,5	1,0	1,2	1,5	0,9	0,6	0,7	1,4	1,8	1,7
1979	1,6	6,0	3,0	2,1	1,4	1,1	0,8	0,9	0,2	0,6	2,4	3,5	1,9
1980	6,8	4,3	3,6	1,5	1,2	0,9	1,8	1,3	0,8	1,5	1,2	2,7	2,3
1981	2,5	5,4	6,6	2,7	1,6	1,3	1,4	1,2	1,0	2,4	1,3	3,3	2,5
1982	15,8	14,2	15,9	2,6	1,9	2,1	2,1	1,6	1,7	1,3	1,6	2,2	5,2
1983	3,4	2,6	2,2	1,2	1,3	1,4	1,3	1,0	0,5	0,1	1,4	7,1	2,0
1984	6,7	10,8	6,3	4,1	2,1	1,7	1,9	2,5	1,0	1,4	2,7	2,1	3,6
1985	2,1	8,1	7,4	3,4	1,7	1,3	1,0	2,0	1,0	1,7	1,7	5,0	3,0
1986	3,1	6,2	10,0	4,1	2,5	1,5	1,4	1,4	0,5	2,3	3,1	6,3	3,5
1987	11,8	9,0	5,2	2,7	1,3	0,7	1,2	1,9	0,6	1,2	3,4	2,7	3,4
1988	7,2	5,2	6,0	2,5	1,5	1,4	1,7	0,9	1,0	1,3	2,0	2,9	2,8
1989	4,6	7,4	4,2	1,3	1,3	0,9	1,0	2,9	1,0	1,3	2,0	5,9	2,8
1990	3,6	3,8	2,0	1,9	1,0	1,0	0,7	0,9	1,0	1,3	2,0	2,3	1,8
1991	1,4	3,8	3,6	4,8	1,0	0,8	1,2	0,6	1,0	1,3	2,0	1,6	1,9
1992	7,2	4,9	4,1	2,4	1,6	1,4	1,1	1,0	1,0	1,3	2,0	0,4	2,4
1993	2,5	8,5	5,4	2,4	1,2	1,5	2,4	1,1	1,0	1,3	2,0	2,5	2,6
1994	12,4	3,5	4,8	2,5	1,8	1,7	1,7	2,2	1,0	1,3	2,0	2,5	3,1
1995	7,2	9,1	2,6	2,1	2,0	0,7	1,5	0,9	1,0	1,3	2,0	4,2	2,8
1996	14,5	10,1	5,2	2,0	1,4	0,4	0,8	0,1	1,0	1,3	2,0	5,9	3,7
	1.4	26	2.0	1.2	1.0	0.4	0.7	0.1	0.2	0.1	0.7	0.4	1.7
Min.	1,4	2,6	2,0	1,2	1,0	0,4	0,7	0,1	0,2	0,1	0,7	0,4	1,7
MOYENNE	6,5	8,1	6,6	2,7	1,6	1,3	1,6	1,4	1,0	1,3	2,0	3,8	3,1
Max.	15,8	20,1	19,6	4,8	2,5	2,3	3,0	2,9	1,7	2,4	5,2	8,0	5,2

MdE-ORE-ADER-JIRAMA Page 121 sur 134

12.5.4 Apports naturels de la Mandraka à l'usine de Mandraka (m3/s)

Année	Jan	Févr	Mars	Avr	Mai	Juin	Juil	Août	Sept	Oct	Nov	Déc	Moyenne
nb jours	31	28	31	30	31	30	31	31	30	31	30	31	365
no jours	51	20	51	50	51	50	51	51	50	51	50	51	303
1970	13,4	8,4	5,0	4,7	3,5	3,5	3,4	4,2	2,5	1,8	2,4	4,9	4,8
1971	8,0	17,7	10,6	4,8	3,9	3,0	3,9	2,9	2,8	1,5	3,7	7,7	5,8
1972	6,2	21,4	20,8	7,1	3,7	2,9	3,6	2,4	1,6	3,3	3,3	4,7	6,7
1973	17,7	21,9	20,3	7,5	4,0	4,5	3,7	3,4	2,4	1,8	1,7	3,6	7,6
1974	6,6	8,8	8,4	6,6	4,1	3,8	5,0	3,0	2,7	2,5	3,4	11,0	5,5
1975	12,2	16,7	29,6	6,5	4,5	3,7	3,1	3,5	2,6	2,1	7,4	11,9	8,6
1976	18,3	15,6	9,6	7,3	4,1	3,2	3,6	2,8	2,2	2,5	2,6	9,1	6,7
1977	9,7	29,8	18,4	7,0	4,3	3,5	3,2	3,7	2,5	2,5	2,2	3,1	7,4
1978	4,3	4,5	8,1	3,4	2,4	2,4	2,8	1,8	1,4	1,2	2,4	3,0	3,1
1979	2,8	9,2	5,5	4,5	2,8	2,4	2,4	2,2	1,2	1,2	3,7	5,0	3,5
1980	9,6	7,0	6,5	3,7	3,0	2,4	3,4	2,8	2,0	2,8	3,3	4,3	4,2
1981	4,6	7,5	10,0	5,4	3,6	2,9	2,8	2,5	2,1	3,8	2,5	5,1	4,4
1982	23,6	24,2	24,5	6,4	4,6	4,0	4,0	3,4	3,3	2,9	3,1	4,0	8,9
1983	6,5	5,5	5,2	3,5	3,2	3,3	3,1	2,7	2,0	1,5	2,9	10,6	4,2
1984	12,5	18,5	11,9	8,3	4,4	3,9	4,1	5,1	2,9	3,3	5,5	3,8	6,9
1985	4,2	13,2	12,8	7,3	4,4	3,2	2,9	4,1	3,4	3,8	3,3	8,1	5,9
1986	5,5	11,2	16,1	8,3	5,7	3,9	3,8	3,5	2,0	4,1	4,6	9,9	6,5
1987	21,4	14,8	8,0	4,7	2,7	1,6	2,5	3,5	1,8	1,4	4,1	2,8	5,7
1988	10,5	8,7	9,7	4,9	3,2	3,1	3,6	2,4	2,3	2,5	3,5	5,5	5,0
1989	7,7	11,6	8,5	4,1	3,5	2,9	2,8	5,0	2,8	3,1	3,4	9,6	5,4
1990	6,8	7,0	4,6	4,2	2,9	2,8	2,3	2,5	2,1	2,2	3,3	4,1	3,7
1991	3,5	6,5	6,4	8,8	3,1	2,6	2,8	2,0	2,3	2,5	3,3	3,1	3,9
1992	10,3	8,2	7,4	5,2	4,0	3,4	2,9	2,7	2,3	2,3	3,6	1,6	4,5
1993	4,5	12,6	9,5	5,2	3,2	3,4	4,4	2,8	2,4	2,6	3,3	4,2	4,8
1994	18,3	12,9	11,1	6,3	4,5	3,9	3,8	4,3	2,4	2,3	2,9	4,3	6,4
1995	10,7	14,6	5,3	5,3	4,5	2,8	3,4	2,8	2,5	2,4	3,1	6,4	5,3
1996	21,9	17,5	9,9	5,3	4,3	2,7	3,1	2,2	2,8	2,8	3,4	8,9	7,0
Min.	2,8	4,5	4,6	3,4	2,4	1,6	2,3	1,8	1,2	1,2	1,7	1,6	3,1
MOYENNE	10,4	13,2	11,2	5,8	3,8	3,2	3,3	3,1	2,3	2,5	3,4	5,9	5,6
Max.	23,6	29,8	29,6	8,8	5,7	4,5	5,0	5,1	3,4	4,1	7,4	11,9	8,9

MdE-ORE-ADER-JIRAMA Page 122 sur 134

12.5.5 Apports naturels de la Manandona à l'usine de Manandona (m3/s)

Année	Jan	Févr	Mars	Avr	Mai	Juin	Juil	Août	Sept	Oct	Nov	Déc	Moyenne
nb jours	31	28	31	30	31	30	31	31	30	31	30	31	365
1970	29,3	15,0	10,9	8,9	5,5	2,9	2,2	1,8	1,1	0,8	7,4	6,9	7,7
1971	14,1	26,6	16,8	8,3	3,4	2,5	2,1	1,6	1,4	0,9	1,5	12,9	7,6
1972	7,2	28,2	16,6	9,7	5,0	3,8	2,8	2,4	1,6	4,0	4,9	5,9	7,5
1973	12,1	14,2	18,9	16,7	5,1	3,5	2,7	2,2	1,6	0,8	4,7	7,2	7,4
1974	7,7	7,3	10,2	11,3	9,3	6,6	3,7	2,3	1,5	1,9	8,6	12,4	6,9
1975	12,7	16,4	16,2	6,2	4,0	2,7	2,3	1,9	1,4	0,9	5,2	8,8	6,5
1976	11,4	10,7	8,7	7,0	4,7	3,7	2,3	2,2	1,5	1,1	1,5	5,0	5,0
1977	11,4	10,7	8,7	7,0	4,7	3,7	2,3	2,2	1,5	1,1	1,5	5,0	5,0
1978	5,4	5,4	6,7	6,6	2,8	1,9	2,4	1,1	0,5	0,5	1,6	2,4	3,1
1979	8,7	24,3	10,5	7,8	3,8	2,2	2,2	1,6	1,0	0,6	4,3	10,8	6,4
1980	26,2	22,4	10,0	7,2	5,3	2,7	2,5	1,7	0,8	0,5	2,2	8,3	7,4
1981	9,4	15,7	33,1	17,9	7,0	3,2	2,4	1,8	1,0	1,6	1,7	4,5	8,2
1982	56,2	34,9	41,4	18,6	4,4	2,4	3,1	1,5	1,3	0,9	5,5	6,0	14,6
1983	18,5	24,8	16,5	13,4	2,7	1,6	1,1	0,2	1,1	0,5	0,3	21,8	8,4
1984	28,1	44,3	41,3	16,9	6,8	4,6	3,4	3,5	1,4	3,1	8,9	35,5	16,3
1985	14,6	19,3	24,9	17,5	6,5	3,9	3,4	3,1	1,8	1,8	3,0	8,1	8,9
1986	7,5	23,6	13,0	6,2	4,6	2,4	2,0	1,6	0,8	4,8	14,0	26,6	8,8
1987	55,3	24,9	14,1	11,9	4,9	3,5	3,1	2,1	1,1	0,7	2,4	1,6	10,4
1988	7,9	15,3	6,3	4,2	2,6	2,0	1,8	0,9	0,3	2,2	4,4	24,5	6,0
1989	24,1	16,0	13,4	4,0	3,1	2,1	1,8	1,3	0,8	0,1	1,7	12,2	6,7
1990	15,9	12,7	7,8	7,6	4,1	2,3	2,1	1,3	0,3	0,1	0,5	2,1	4,7
1991	3,4	6,0	9,4	17,4	5,5	3,0	1,8	0,9	0,2	0,2	1,7	4,3	4,5
1992	37,2	36,4	14,5	7,1	2,9	1,4	1,0	0,8	1,1	1,2	3,4	0,1	8,8
1993	12,1	32,6	18,6	15,0	5,3	3,0	2,3	1,2	0,8	0,4	0,2	2,7	7,7
1994	32,4	35,5	21,4	12,4	5,0	3,0	2,3	1,6	1,0	0,9	1,6	5,3	10,1
1995	13,5	34,4	7,6	10,3	6,5	3,7	2,2	1,6	0,9	0,1	3,4	13,1	7,9
1996	21,0	28,9	22,8	8,0	3,0	1,7	1,6	1,2	0,6	0,2	0,1	11,4	8,3
Min.	3,4	5,4	6,3	4,0	2,6	1,4	1,0	0,2	0,2	0,1	0,1	0,1	3,1
MOYENNE	18,6	21,7	16,3	10,6	4,8	3,0	2,3	1,7	1,1	1,2	3,6	9,8	7,8
Max.	56,2	44,3	41,4	18,6	9,3	6,6	3,7	3,5	1,8	4,8	14,0	35,5	16,3

MdE-ORE-ADER-JIRAMA Page 123 sur 134

12.5.6 Apports naturels de l'Ivondro à Volobe Amont (m3/s)

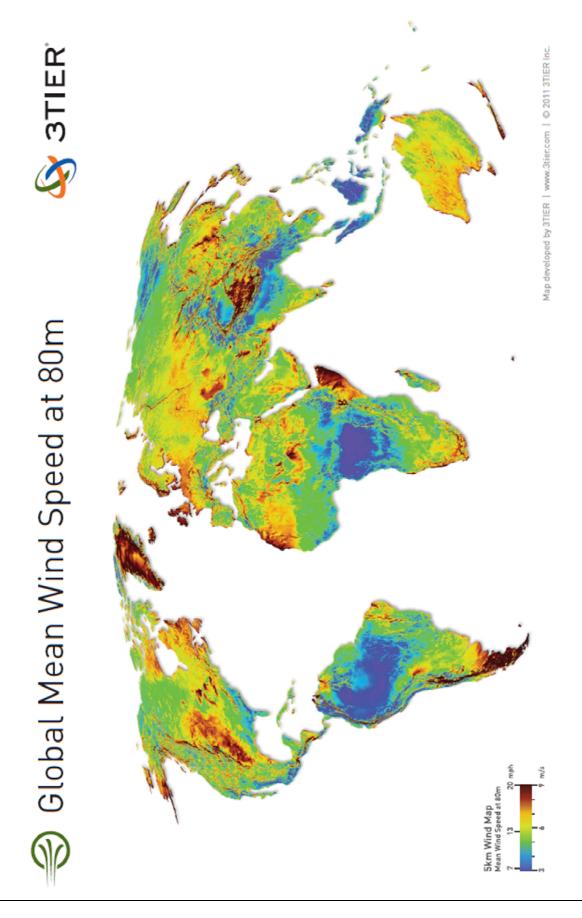
Année	Jan	Févr	Mars	Avr	Mai	Juin	Juil	Août	Sept	Oct	Nov	Déc	Moyenne
nb jours	31	28	31	30	31	30	31	31	30	31	30	31	365
no jours	31	20	31	30	31	30	31	31	30	31	30	31	303
1970	124,2	126,1	139,6	188,7	112,6	104,0	98,2	130,9	94,5	67,3	56,8	56,2	108,1
1971	249,3	146,3	104,9	96,3	93,8	79,0	114,6	91,7	80,5	63,6	84,6	87,5	107,6
1972	105,9	253,2	303,2	161,7	113,6	99,2	119,4	85,0	71,6	71,0	75,8	127,1	131,6
1973	402,4	366,8	262,8	180,0	130,9	131,9	125,1	141,5	104,9	81,6	64,6	67,1	170,6
1974	178,1	169,4	144,4	139,6	103,0	99,2	124,2	129,0	86,3	66,7	64,4	80,2	115,1
1975	98,2	121,3	362,9	163,6	123,2	116,5	109,7	112,6	98,2	79,7	83,0	186,7	138,4
1976	209,9	176,2	181,0	139,6	107,8	98,2	93,6	81,4	68,5	63,8	53,6	69,6	111,6
1977	163,6	309,0	218,5	142,5	112,6	109,7	101,1	110,7	104,9	94,3	77,9	76,5	134,0
1978	74,8	78,6	149,2	98,2	71,3	81,6	91,8	73,4	100,1	50,0	42,2	58,3	80,8
1979	71,2	122,3	81,1	77,6	49,9	44,5	68,5	75,0	39,3	38,4	36,9	90,0	65,9
1980	194,4	105,9	148,2	84,1	74,5	63,0	77,8	71,6	56,8	57,4	52,7	65,8	87,8
1981	48,4	63,8	83,8	77,6	57,3	51,7	44,9	51,6	59,6	47,9	41,8	71,4	58,3
1982	157,9	247,4	238,7	121,3	88,9	107,8	110,7	122,3	86,6	116,5	77,6	86,9	129,6
1983	122,3	105,9	85,1	96,3	104,9	113,6	94,9	83,2	69,7	50,0	79,9	81,8	90,5
1984	78,6	96,3	91,1	75,4	54,6	73,3	64,6	90,5	88,2	62,7	55,3	97,2	77,2
1985	171,3	96,3	92,8	76,5	73,4	79,7	68,3	71,2	59,5	48,6	38,2	65,5	78,5
1986	92,0	76,7	187,7	90,9	75,1	86,9	79,2	64,0	54,6	41,6	37,4	99,2	82,3
1987	174,2	396,6	245,5	233,0	176,2	140,5	117,4	103,0	85,2	66,7	68,2	98,2	157,1
1988	74,3	148,2	155,9	159,8	109,7	89,9	91,8	80,2	79,7	55,4	46,6	76,3	97,0
1989	109,7	113,6	185,8	102,0	83,8	101,1	96,3	88,3	61,1	64,8	76,7	92,1	98,0
1990	180,0	161,7	535,2	274,3	183,9	154,0	140,5	114,6	93,5	86,8	144,4	98,2	180,9
1991	150,2	111,7	92,4	81,1	70,1	82,7	72,7	67,0	71,5	60,4	55,6	60,1	81,1
1992	64,9	42,5	54,3	54,4	41,6	37,6	75,9	77,8	68,5	40,7	44,0	135,7	61,8
1993	93,6	138,6	108,8	71,6	69,0	55,4	53,1	76,3	66,3	58,2	55,2	43,2	73,7
1994	75,2	106,9	184,8	101,1	67,5	66,3	72,5	63,7	45,5	34,7	58,0	82,1	79,8
1995	54,6	88,7	241,6	110,7	82,0	93,3	107,8	108,8	106,9	97,2	68,0	87,1	104,1
1996	163,6	155,9	216,6	129,0	81,7	65,6	76,0	138,6	76,1	57,8	72,3	143,4	114,7
Min.	48,4	42,5	54,3	54,4	41,6	37,6	44,9	51,6	39,3	34,7	36,9	43,2	58,3
MOYENNE	136,4	152,8	181,3	123,2	93,1	89,9	92,2	92,7	77,0	63,8	63,4	88,3	104,3
Max.	402,4	396,6	535,2	274,3	183,9	154,0	140,5	141,5	106,9	116,5	144,4	186,7	180,9

MdE-ORE-ADER-JIRAMA Page 124 sur 134

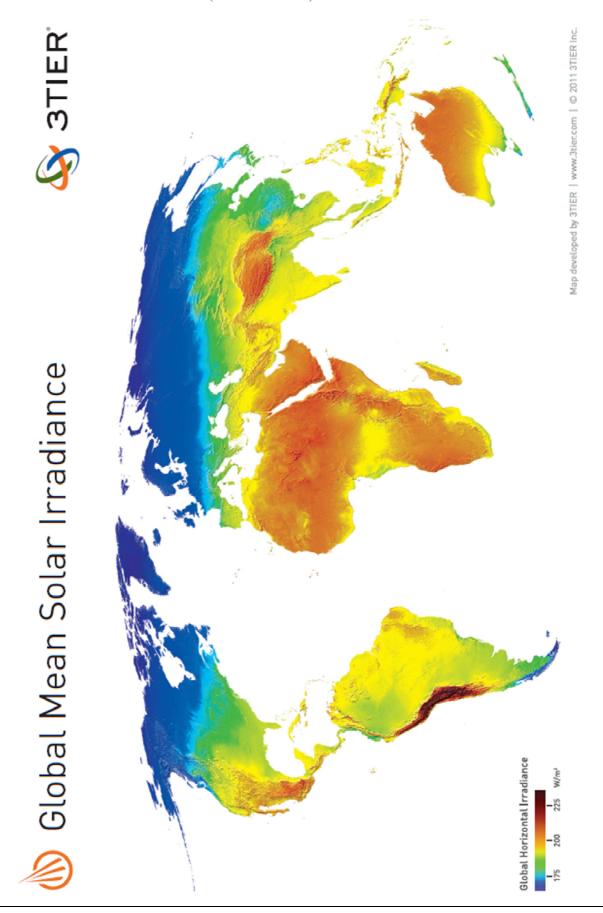
12.5.7 Apports naturels de la Mangora à Lohavanana (m3/s)

Année	Jan	Févr	Mars	Avr	Mai	Juin	Juil	Août	Sept	Oct	Nov	Déc	Moyenne
1 .	31	28	31	30	31	30	31	31	30	2.1	30	31	265
nb jours	31	28	31	30	31	30	31	31	30	31	30	31	365
1970	900,1	786,1	510,1	263,6	199,1	155,7	142,5	121,6	94,8	76,9	242,3	489,9	329,7
1971	464,1	1219,5	918,7	446,2	247,5	179,5	171,3	128,2	107,0	96,1	141,6	393,1	370,9
1972	753,9	1047,1	1174,2	517,1	299,8	224,8	198,0	177,5	123,4	131,7	177,8	312,1	424,9
1973	634,5	666,6	757,4	410,4	231,7	182,1	178,6	142,8	112,4	91,1	203,5	486,1	340,0
1974	546,9	771,9	1111,0	648,6	351,2	224,0	186,1	165,1	127,5	95,8	294,8	441,8	411,8
1975	659,2	739,9	644,4	435,7	243,2	186,2	165,4	139,1	106,3	96,2	229,0	539,4	346,7
1976	626,1	864,7	888,1	471,6	250,7	211,9	168,4	154,6	116,5	164,0	105,4	300,7	357,5
1977	370,0	706,7	656,4	296,0	173,1	143,9	159,2	111,1	90,5	79,2	106,2	164,8	252,1
1978	200,5	378,0	270,5	209,5	129,1	108,3	118,2	95,0	71,0	61,2	94,7	594,1	193,5
1979	243,7	369,2	331,3	241,7	160,8	135,9	119,5	112,4	86,9	88,6	187,6	217,2	190,1
1980	533,7	406,1	409,5	355,8	221,9	199,0	151,7	119,5	93,6	77,5	262,8	344,6	263,9
1981	258,4	664,6	737,9	300,5	192,5	170.7	158,4	141,8	109,5	104.3	192,1	441,0	287,3
1982	507,4	942,1	563,8	417,2	208,3	169,6	161,3	165,9	112,2	90,1	163,3	668,5	344,0
1983	643,6	534.0	452,0	365,3	196,6	147,0	153,5	152.7	121,5	95,7	121,3	363,5	277,8
1984	513,4	390,7	599,4	289,8	206,5	159,8	137,1	126,0	120,3	77,5	236,5	479,5	278,0
1985	637,4	457,9	646,3	288,8	173,4	142,4	144,2	117,2	97,7	87,6	257,0	670,8	310,1
1986	404,6	509,4	309,3	255,0	158,6	135,4	122,7	133,1	93,9	66.1	130,4	562,3	238,8
1987	717,7	733,9	385,4	380,7	249,9	174,7	149,8	153,1	108,2	81,6	118,6	338,8	296,9
1988	900,1	786,1	510,1	263,6	199,1	155,7	142,5	121,6	94,8	76,9	242,3	489,9	329,7
1989	464,1	1219,5	918,7	446,2	247,5	179,5	171.3	128,2	107,0	96.1	141,6	393,1	370,9
1990	753,9	1047,1	1174,2	517,1	299,8	224,8	198,0	177,5	123,4	131,7	177,8	312,1	424,9
1991	634,5	666,6	757,4	410,4	231,7	182,1	178,6	142,8	112,4	91.1	203,5	486.1	340,0
1992	546,9	771.9	1111.0	648,6	351,2	224,0	186.1	165,1	127,5	95,8	294.8	441,8	411,8
1993	659,2	739,9	644,4	435,7	243,2	186,2	165,4	139,1	106,3	96,2	229.0	539,4	346,7
1994	626,1	864,7	888,1	471,6	250,7	211,9	168,4	154,6	116,5	164.0	105.4	300,7	357,5
1995	370,0	706,7	656,4	296,0	173,1	143,9	159,2	111,1	90,5	79,2	106,2	164,8	252,1
1996	200,5	378,0	270,5	209,5	129,1	108,3	118,2	95,0	71,0	61,2	94,7	594,1	193,5
Min.	200,5	369,2	270,5	209,5	129,1	108,3	118,2	95,0	71,0	61,2	94,7	164,8	190,1
MOYENNE	547,1	717,4	677,6	381,2	222,9	172,9	158,3	136,7	105,3	94,6	180,0	427,0	316,3
Max.	900,1	1219,5	1174,2	648,6	351,2	224,8	198,0	177,5	127,5	164,0	294,8	670,8	424,9

MdE-ORE-ADER-JIRAMA Page 125 sur 134


12.5.8 Apports naturels de la Mania à Antetezambato (m3/s)

Année	Jan	Févr	Mars	Avr	Mai	Juin	Juil	Août	Sept	Oct	Nov	Déc	Moyenne
nb jours	31	28	31	30	31	30	31	31	30	31	30	31	365
1970	731,0	597,3	331,0	209,9	161,9	133,7	115,9	101,6	81,4	66,0	159,8	133,7	233,3
1971	264,2	364,5	265,3	159,8	111,7	96,7	92,0	77,5	75,1	59,5	89,7	179,6	151,7
1972	99,6	346,7	291,4	179,6	119,1	101,0	103,8	96,0	73,4	90,9	114,9	205,7	150,6
1973	312,2	341,5	473,1	256,9	138,9	128,4	107,6	106,5	98,8	81,6	192,2	268,4	208,2
1974	237,1	271,5	301,8	226,6	240,2	152,5	127,4	105,5	84,5	100,1	138,9	226,6	184,0
1975	268,4	480,4	351,9	237,1	169,2	143,1	130,5	119,1	104,4	98,6	155,6	177,5	201,2
1976	244,4	259,0	226,6	228,7	138,9	118,0	109,7	104,4	75,3	108,6	110,7	262,1	165,1
1977	201,6	1107,0	487,7	312,2	174,4	133,7	120,1	115,9	103,6	111,7	131,6	89,9	251,4
1978	167,1	157,7	164,0	150,4	99,5	97,9	103,9	84,2	75,2	72,1	79,8	85,5	111,2
1979	158,7	415,6	308,1	168,1	120,1	107,6	109,7	104,4	97,1	83,4	145,2	293,4	174,5
1980	676,7	393,7	170,2	134,7	104,4	88,0	105,5	110,7	67,9	56,7	82,8	198,4	181,7
1981	216,2	238,1	378,0	264,2	159,8	117,0	101,9	89,9	81,4	89,2	112,8	127,4	164,3
1982	1035,9	739,4	825,0	300,8	196,3	172,3	148,3	125,3	111,7	109,7	153,5	128,4	335,6
1983	248,5	293,4	222,4	139,9	110,7	117,0	99,9	83,3	67,0	70,3	78,3	212,0	144,5
1984	289,3	255,9	164,0	115,9	94,1	84,1	81,9	73,1	60,9	51,6	53,2	217,2	127,9
1985	196,3	212,0	242,3	200,5	104,4	89,8	80,6	76,4	62,9	56,6	66,8	167,1	129,2
1986	240,2	278,8	375,9	107,6	84,1	80,3	75,6	72,9	70,0	56,5	59,0	196,3	141,0
1987	317,5	264,2	472,0	314,3	114,9	82,7	85,0	88,6	84,8	78,7	119,1	167,1	182,1
1988	239,1	255,9	146,2	104,4	90,3	70,5	60,8	53,8	46,1	52,3	59,9	139,9	109,2
1989	365,5	107,6	242,3	169,2	95,8	78,3	82,7	84,9	63,2	55,9	60,3	223,5	136,5
1990	124,3	165,0	139,9	122,2	88,8	73,1	65,2	66,8	53,9	50,2	100,4	184,8	102,5
1991	327,9	402,1	209,9	157,7	115,9	115,9	96,8	84,5	67,7	65,6	98,3	184,8	159,2
1992	117,0	269,4	192,2	103,1	80,0	89,1	96,4	89,5	73,6	59,7	106,5	228,7	124,6
1993	369,7	274,7	233,9	201,6	119,1	99,4	120,1	107,6	100,4	92,3	124,3	274,7	176,1
1994	213,0	153,5	142,0	127,4	108,6	89,6	80,5	76,9	70,8	57,6	62,0	111,7	107,7
1995	252,7	158,7	336,3	150,4	102,9	89,3	84,9	79,7	80,7	76,7	153,5	239,1	150,7
1996	123,2	176,5	134,7	103,8	83,2	79,1	75,8	64,4	54,8	54,0	61,5	172,3	98,2
Min.	99,6	107,6	134,7	103,1	80,0	70,5	60,8	53,8	46,1	50,2	53,2	85,5	98,2
MOYENNE	297,7	332,6	289,9	183,2	123,2	104,7	98,6	90,5	77,3	74,3	106,3	188,7	163,0
Max.	1035,9	1107,0	825,0	314,3	240,2	172,3	148,3	125,3	111,7	111,7	192,2	293,4	335,6


12.6 Extrait des comptes opérationnels des 6 exploitations JIRAMA

		RIA			RIT		Ar	Ambositra		Ant	Antsiranana		A	Ambilobe		Ä	Morondava		Total des 6	Fotal des 6 exploitation JIRAMA	JIRAMA
	2010	2011	2012	2010	2011	2012	2010	2011	2012	2010	2011	2012	2010	2011	2012	2010	2011	2012	2010	2011	2012
PRODUCTION BRUTE	827 811	873 136 941 384	941 384	83 901	104 077	102 595	3 693	3 819	3 7 49	44 844	46 223	45 589	3 833	4 057	4 766	026 9	7 546	8 091	971052	1 038 857	1 106 173
Production Hydroélectrique	579 220 532 480 609 874	532 480	609 874	31 549	35 047	35 857	0	0	0	0	0	0	0	0	0	0	0	0	610770	567 527	645 732
Production Thermique FO	160 780	214 887 217 498	217 498	50 964	67 647	64 116	0	0	0	41 731	39 628	28 899	0	0	0	0	0	0	253 476	322 162	310 513
Production Thermique GO	14 841	33 630	38 403	1 387	1 383	2 621	3 693	3 819	3 7 4 9	3 112	6 594	16 690	3 833	4 057	4 766	6 970	7 546	8 091	33836	57 029	74 320
Consommation de combustible (milliers litre)	s litre)																				
Total FO (950 gr/l)	37 120	49 576	50 683	12 733	16 394	15 753	0	0	0	10 206	9 650	7 086	0	0	0	0	0	0	09009	75 620	73 521
Total GO (845 gr/l)	3 210	5 092	9 258	530	869	890	1 050	1 109	1 089	886	2 211	5 100	1 078	1 147	1 360	2 129	2 372	2 417	8 986	12 629	20 112
Compte d'exploitation (Millons de MGA courants)	A courants)																				
PRODUITS																					
Ventes elec movenne tension	61853	59564	09069	4733	8677	5971	79	32	C	8281	6922	12443	С	С	C	478	569	589	75423	75764	88063
Ventes elec basse tension	94288	99304	111613	11949	13246	14514	1252	1309	1432	9062	8101	8396	1096	1229	1494	1993	2059	2388	118484	125247	139838
Redevances	10858	11671	12578	1463	1571	1731	70	74	77	527	555	607	62	89	75	128	131	139	13107	14070	15207
Cessions	11664	11269	12217	847	849	962	9	7	∞	208	884	492	2	2	æ	282	302	310	13009	13313	13991
TOTAL DES PRODUITS	178663	181808	205468	18991	24342	23178	1407	1422	1518	16921	16462	21938	1161	1299	1572	2881	3061	3425	220023	228395	257099
CHARGES																					
PRODUCTION HYDRAULYQUE	14285	17330	12658	339	362	402	0	0	0	0	0	0	0	0	0	0	0	0	14624	17692	13060
PRODUCTION THERMIQUE	85481	136899	169950	32250	46580	46963	2144	2604	3047	26559	31724	34454	2232	2714	4053	4257	6744	6873	152923	227265	265339
TRANSPORT D' ENERGIE	1823	2054	2169	182	143	143	0	0	0	0	0	0	0	0	0	0	0	0	2002	2197	2312
DISTRIBUTION ENERGIE	5485	6889	7281	720	809	669	24	69	26	793	209	749	49	51	65	36	64	84	7107	8228	8934
CHARGES COMMUNES	6404	6511	6357	1511	1198	1367	124	103	101	995	1112	1224	134	123	122	177	182	147	9345	9230	9318
TOTAL DES CHARGES	113478	169653	198415	35002	48892	49573	2532	2776	3204	28347	33444	36427	2415	2887	4240	4470	6991	7104	186005	264642	298963
MARGE D'EXPLOITATION	65185	12155	7054	-16012	-24549	-26396	988-	-1354	-1686	-11425	- 16982	-14489	-1255	-1588	-2668	-1589	-3930	-3679	34018	-36248	-41864
Ventes MT (MWh)	267728	257438	266653	15145	25526	20591	116	38	0	15697	14604	21329	0	0	0	1285	1481	1383	299971	299088	309957
Prix moyen MT (MGA/kWh)	231	231	259	313	340	290	683	839	N	528	474	583	ND	ND	ND	371	384	426	251	253	284
Ventes BT (MWh)	325303	344627	367048	40609	45191	46077	2763	2883	2937	15494	16149	15669	2164	2374	2664	4032	4162	4418	390365	415386	438813
Prix moyen BT (MGA/kWh)	290	288	304	294	293	315	453	454	488	510	205	536	202	517	561	494	495	541	304	302	319
Recettes vs vente (MGA/kWh)	301	302	324	341	344	348	489	487	517	543	535	593	536	547	290	542	542	290	319	320	343
Charges vs ventes (MGA/kWh)	191	282	313	628	691	744	962	950	1091	606	1087	985	1116	1216	1592	841	1239	1225	269	370	399
Marge Exploit vs ventes (MGA/kWh)	110	20	11	-287	-347	-396	-308	-463	-574	-366	-552	-392	-580	699-	-1002	-299	969-	-634	49	-51	-56
Recettes vs production (MGA/kWh)	216	208	218	226	234	226	381	372	405	377	356	481	303	320	330	413	406	423	227	220	232
Charges vs production (MGA/kWh)	137	194	211	417	470	483	621	727	855	632	724	799	630	712	890	641	926	878	192	255	270
Marge Exploit vs prod. (MGA/kWh)	79	14	7	-191	-236	-257	-240	-354	-450	-255	-367	-318	-327	-391	-560	-228	-521	-455	35	-35	-38

12.7 Potentiel éolien mondial (Source 3TIER)

12.8 Potentiel solaire mondial (Source 3TIER)

12.9 Impact du Scénario de stress sur les caractéristiques des candidats hydrauliques

Eploitation	Coût complet	(\$/MWh)	79	97	92	58	113	143	72	119	45	81	61	94	26
	O&M (5)	(k\$US)	10250	11300	8450	5100	4050	4070	770	1550	200	940	470	250	110
	Agglomérat° à desservir		RIA - RIT - Ambositra	RIA - RIT - Ambositra	RIA - RIT - Ambositra	RIA - RIT - Ambositra	RIA	RIT - RIA - Ambositra	RIA	RIA	RIA	Antsiranana - Ambilobe	RIA	RIA	Ambositra
MSI	Année au	pius tot	2020	2020	2022	2019	2020	2020	2018	2020	2017	2018	2017	2017	2017
	Annuité	(k\$US)	91 790	101 140	059 52	44 640	34 260	34 410	9 530	12 750	2 600	7 930	3 790	2 000	068
ion	Invest.	(k\$US)	739 360	814 730	609 410	359 580	275 950	277 140	52 620	102 700	45 080	63 860	30 540	16 090	7 150
Construction	MOE & MOA (4)	(k\$US)	76 880	84 720	63 370	38 280	30 370	30 500	5 790	11 630	5 250	7 030	3 560	1 870	830
	Coût (3)	(k\$US)	512 540	564 780	422 450	255 220	202 440	203 320	38 600	77 510	35 000	46 850	23 710	12 490	5 550
	Durée	(mois)	48	48	48	43	36	36	36	30	24	36	24	24	24
	Vol. utile réservoir	(Mm3)	-	1200	-	45	100	-	100	-	-	-	-	-	-
Production	Productible Vol. utile annuel réservoir	(GWh)	1290	1154	915	852	340	270	102	120	140	110	70	24	18
	Puissance à installer	(MW)	180	150	120	105	70	95	34	22	21	15	12	3,5	2,2
Hydrologie	Module	(m /s)	165	182	314	113	135	103	20	06	39	14	240	14	6
Hye	Bassin versant	(km²)	7 100	008 6	11 500	4 700	7 270	2 560	1873	3 250	1 550	970	4 430	ND	ND
Localisation	Région		VAKINANKARATRA	ANALAMANGA	ALAOTRA MANGORO	ALAOTRA MANGORO	ANALAMANGA	ATSINANANA	ALAOTRA MANGORO	VAKINANKARATRA	VAKINANKARATRA	DIANA	ANALAMANGA	ITASY	AMORON'I MANIA
Tvne	aménagmt (2)		AFL	AVR	AFL	AVR	AFL	AFL	AVR	AFL	AFL	AFL	AFL	AFL	AFL
	Nom de l'aménagement		Antetezambato	Mahavola	Lohavanana	Sahofika	Ranomafana	Volobe Amont	Andekaleka G4 + Barrage Fempona (1)	Tsinjoarivo	Talaviana	0 Andranomamofona	Mahitsy	2 Lily	3 Tazonana
	73				~		10	LO.	_	cΩ.	6	. 0 1	1	7	Ω

(1) : Ce projet consiste à rajouter un 4ème groupe à la centrale existante d'Andekaleka et à aménager un barrage régulateur (Fempona) en amont de l'aménagement actuel. Les coordonnées GPS correspondent à l'emplacement du barrage de Fempona, et les données hydrologiques à celles du bassin de la Vohitra qui alimente la centrale d'Andekaleka. (2) : AFL = Au fil de l'eau ; AVR : Avecréservoir

^{(3) :} Hors intérêt intercalaire, hors coût ligne d'interconnexion

Frais de MOE & MOA = 15% du Coût de construction

[.] Charges annuelles d'O&M = 2% du coût de construction

12.10 Caractéristiques des candidats hydrauliques pour un taux d'actualisation de 8%

Eploitation	Coût complet	(\$/MWh)	55	89	64	41	80	101	51	86	33	57	44	89	40
	O&M (5)	(k\$US)	10250	11300	8450	5100	4050	4070	770	1550	002	940	470	250	110
	Agglomérat° à desservir		RIA - RIT - Ambositra	RIA - RIT - Ambositra	RIA - RIT - Ambositra	RIA - RIT - Ambositra	RIA	RIT - RIA - Ambositra	RIA	RIA	RIA	Antsiranana - Ambilobe	RIA	RIA	Ambositra
MSI	Année au	pius tot	2020	2020	2022	2019	2020	2020	2018	2020	2017	2018	2017	2017	2017
	Annuité	(k\$US)	61 070	067 290	50 340	29 930	23 210	23 310	4 430	8 720	098 E	5 370	2 620	1 380	919
ion	Invest.	(k\$US)	687 490	757 570	566 660	336 890	261 300	262 430	49 820	98130	43470	60470	29450	15 520	6 900
Construction	MOE & MOA (4)	(k\$US)	76 880	84 720	63 370	38 280	30 370	30 500	5 790	11 630	5 250	7 030	3 560	1 870	830
	Coût (3)	(k\$US)	512 540	564 780	422 450	255 220	202 440	203 320	38 600	77 510	35 000	46 850	23 710	12 490	5 550
	Durée	(mois)	48	48	48	43	36	36	36	30	24	36	24	24	24
	Vol. utile réservoir	(Mm3)	-	1200	-	45	100		100	-	-	-	-	-	-
Production	Productible Vol. utile annuel réservoir	(GWh)	1290	1154	915	852	340	270	102	120	140	110	70	24	18
	Puissance à installer	(MM)	180	150	120	105	70	95	34	22	21	15	12	3,5	2,2
Hydrologie	Module	(m_/s)	165	182	314	113	135	103	20	06	39	14	240	14	6
Hye	Bassin versant	(km ²)	7 100	008 6	11 500	4 700	7 270	2 560	1873	3 250	1 550	970	4 430	ND	ND
Localisation	Région		VAKINANKARATRA	ANALAMANGA	ALAOTRA MANGORO	ALAOTRA MANGORO	ANALAMANGA	ATSINANANA	ALAOTRA MANGORO	VAKINANKARATRA	VAKINANKARATRA	DIANA	ANALAMANGA	ITASY	AMORON'I MANIA
Tvne	aménagmt (2)		AFL	AVR	AFL	AVR	AFL	AFL	AVR	AFL	AFL	AFL	AFL	AFL	AFL
	Nom de l'aménagement		Antetezambato	Mahavola	Lohavanana	Sahofika	Ranomafana	Volobe Amont	Andekaleka G4 + Barrage Fempona (1)	Tsinjoarivo	Talaviana	0 Andranomamofona	Mahitsy	Lily	Tazonana
	73						10	10		cΩ.	6	. 0 1	1	7	κį

(1) : Ce projet consiste à rajouter un 4ème groupe à la centrale existante d'Andekaleka et à aménager un barrage régulateur (Fempona) en amont de l'aménagement actuel. Les coordonnées GPS correspondent à l'emplacement du barrage de Fempona, et les données hydrologiques à celles du bassin de la Vohitra qui alimente la centrale d'Andekaleka. (2) : AFL = Au fil de l'eau ; AVR : Avecréservoir

^{(3) :} Hors intérêt intercalaire, hors coût ligne d'interconnexion

^{(4) :} Frais de MOE & MOA = 15% du Coût de construction (5) : Charges annuelles d'O&M = 2% du coût de construction

12.11 Synoptique des principales simulations effectuées dans le cadre du PEMC

				Demande Probable	Probable			Demande Volontariste	olontariste
	Baril	\$08	\$(\$08	\$)9	\$09	\$08	⇔
	Taux d'actualisation	10%	%	15%	%	10	10%	10%	%
Réseau de :	Simulation	F.O K\$	c\$/kWh	F.O K\$	c\$/kWh	F.O K\$	c\$/kWh	F.O k\$	c\$/kWh
RIA	Thermique de référence	996 031	8,8	829 097	8,3	891 103	6,7	1 066 356	9,1
RIA	avec Hydros	735 408	6,5	687 381	6'9	692 675	6,1	772 300	9'9
RIA	avec Hydros - variante 1 (1)	833 620	7,3						
RIA	avec Hydros - variante 2 (2)	864 616	2,6						
RIT	Thermique de référence	167 369	13,9	148 470	13,9	145 585	12,1	171 980	13,9
RIT	avec Hydro	167 369	13,9	148 472	13,9	145 585	12,1	171 973	13,9
Ambositra	Thermique de référence	17 151	34,6	15 416	35,4	14 680	29,6	15 343	30,7
Ambositra	avec Hydro	8 585	17,4	8 334	19,2	7 923	16	8 583	17,2
RIATA	avec Hydros	869 614	7,2	814 672	9'2	824 123	6,8	897 432	7,2
Antsiranana	Thermique	130 158	20,9	115 563	21,1	126 643	20,3	136 737	20,8
Ambilobe	Thermique	17 529	31,9	15 818	32,5	15 149	27,6	17 687	32,2
RIDA	avec hydro	100 014	16,2	120 96	17,7	96 819	15,7	98 176	15,9
Morondava	Thermique	26 059	27,7	22 809	27,5	21 862	23,3	26 704	27,7

(1): Date au plus tôt Antetezambato gardée en 2020, Date au plus tôt Sahofika reculée en 2021 (au lieu de 2019), dates au plus tôt des autres hydros gardées. (2) : Dates au plus tôt de Antetezam bato et Sahofika reculées en 2030, dates au plus tôt des autres hydros gardées.

12.12 Spécifications techniques du Système Relationnel de Planification (« SyReP »)

Le CAhier de SPEcification des TEChniques (CASPETEC) fourni, d'une part, des précisions sur les performances techniques attendues au Système Relationnel de Planification à mettre en place, et d'autre part, de décrire les spécifications techniques indispensables au bon fonctionnement dudit système.

12.12.1Performances techniques

a) Portail web

Le système relationnel sera bâti en tant que portail web dynamique, (cf. Chapitre 4 des TdR), et offrira une porte d'entrée unique sur un large éventail de ressources et de services sur le secteur Electricité.

Entre autres, il devra:

- Etre conçu pour être souple en matière de traitement, avec un temps de réponseutilisateur rapide ;
- Etre hébergé chez un fournisseur d'accès Internet à Madagascar
- Fournir et assurer les services web usuels (HTTP, FTP, BDD, ...) sans interruption ;
- De plus, le système relationnel devra être capable d'assurer un stockage de données géo spatiales vectorielles, (avec une liaison de type «Google map» ou «Mapserver»), en plus des données chiffrées.

b) Archivage

Le système relationnel disposera d'un système d'archivage automatique, classé chronologiquement, avec une sauvegarde permanente, interne (sur une période à déterminer) et externe, afin de pouvoir utiliser ultérieurement toutes les informations dudit système.

12.12.2Spécifications techniques

a) Base de données

Le système relationnel sera une base de données du type Oracle, Microsoft SQL server, MySQL, etc...

b) Interface

Le système relationnel sera présenté avec toutes les fonctionnalités et convivialités classiques usuelles d'un site dynamique, et doit répondre aux exigences des standards en matière de navigateur internet standard (Google Chrome, Internet Explorer, Mozilla Firefox, Opéra, Safari, etc...).

c) Mise en ligne

La mise en ligne se fera sous le nom de domaine **elec.mg** pour rappeler que système relationnel est le « bâtiment » qui abrite le système de planification de développement du secteur Electricité.

d) <u>Sécurisation</u>

Le système relationnel doit inclure les outils conventionnels de sécurisation des transactions (encryptage, certificats, authentification par clés, mots de passe, proxy, firewall, programmes anti virus, ...).

e) Maintenance

Le système relationnel doit contenir des procédures, outils et ressources pour assurer la gestion et la maintenance, c'est-à-dire celles du portail, des applets, des accès, de l'usage, du support utilisateur (*help desk*), de la performance, etc...

f) <u>Documentation</u>

Tous les documents de conception font partie intégrante du système relationnel.